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Reverse Data Management

Q

OutputInput Transformation 

D

QUERY EVALUATION:
A transformation of the input to the output
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Reverse Data Management (RDM)

Q

OutputInput Transformation 

D

Intervention

QUERY EVALUATION:
A transformation of the input to the output

REVERSE DATA MANAGEMENT (RDM):
What are the required changes to the input,
in order to achieve a desired output?

Meliou, Gatterbauer, Suciu. Reverse Data Management. VLDB 2011 Vision track. https://doi.org/10.14778/3402755.3402803 

https://doi.org/10.14778/3402755.3402803
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Reverse Data Management (RDM): 2 types of Explanations

Q

QUERY EVALUATION:
A transformation of the input to the output

Marques-Silva. Logic-Based Explainability in Machine Learning. Reasoning Web. Causality, Explanations and Declarative Knowledge. 2023. https://doi.org/10.1007/978-3-031-31414-8_2 

REVERSE DATA MANAGEMENT (RDM):
What are the required changes to the input,
in order to achieve a desired output?

OutputInput Transformation 

D

2. Abductive (factual):

1. Contrastive (counterfactual):

Meliou, Gatterbauer, Suciu. Reverse Data Management. VLDB 2011 Vision track. https://doi.org/10.14778/3402755.3402803 

Two types of explanations in RDM, 
naming used from Explainable AI (XAI):

Intervention

https://doi.org/10.1007/978-3-031-31414-8_2
https://doi.org/10.14778/3402755.3402803
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D

2. Abductive (factual):

1. Contrastive (counterfactual): set of 
tuples (features) of min size that are 
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Reverse Data Management (RDM): 2 types of Explanations

Q

QUERY EVALUATION:
A transformation of the input to the output

Marques-Silva. Logic-Based Explainability in Machine Learning. Reasoning Web. Causality, Explanations and Declarative Knowledge. 2023. https://doi.org/10.1007/978-3-031-31414-8_2 

REVERSE DATA MANAGEMENT (RDM):
What are the required changes to the input,
in order to achieve a desired output?

OutputInput Transformation 

D

2. Abductive (factual): set of tuples 
(features) of min size that are sufficient 
for ensuring a certain output (prediction)

1. Contrastive (counterfactual): set of 
tuples (features) of min size that are 
sufficient to change an output (prediction)

= max deletions of tuples
(e.g., smallest witness problem)

= min deletions of tuples
(e.g., resilience, deletion propagation)

Meliou, Gatterbauer, Suciu. Reverse Data Management. VLDB 2011 Vision track. https://doi.org/10.14778/3402755.3402803 

Two types of explanations in RDM, 
naming used from Explainable AI (XAI):

Intervention

= DELETION PROPAGATION

https://doi.org/10.1007/978-3-031-31414-8_2
https://doi.org/10.14778/3402755.3402803
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Example Reverse Data Management Problems

1. Resilience

Q:-R(x),S(x,y,z),T(z)

Delete min number of tuples to make Boolean Q false

𝑥 
3
4

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

R S T
𝑧 
7

true
Q

? 

select exists(
  select 1
  from R, S, T
  where R.x=S.x  
  and S.z=T.z)
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Example Reverse Data Management Problems

1. Resilience

Q:-R(x),S(x,y,z),T(z)

Delete min number of tuples to make Boolean Q false

𝑥 
3
4

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

R S T

|G|=1 

𝑧 
7

true
Q

Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, VLDB 2015. https://doi.org/10.14778/2850583.2850592 
Makhija, Gatterbauer. A Unified Approach for Resilience and Causal Responsibility with Integer Linear Programming (ILP) and LP Relaxations, SIGMOD 2024. https://doi.org/10.1145/3626715  

select exists(
  select 1
  from R, S, T
  where R.x=S.x  
  and S.z=T.z)

https://doi.org/10.14778/2850583.2850592
https://doi.org/10.1145/3626715
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𝑢 𝑥 
1 3
1 4
2 3

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

2. Source side-effects (deletion propagation)

𝑧 𝑤 
7 9

𝑢 𝑤 
1 9
2 9

Example Reverse Data Management Problems

1. Resilience

R' S T' Q

Q:-R(x),S(x,y,z),T(z)

Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete an output tuples

𝑥 
3
4

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

R S T

|G|=1 

𝑧 
7

true
Q

Dayal, Bernstein. On the correct translation of update operations on relational views, TODS 1982, https://doi.org/10.1145/319732.319740  
Buneman, Khanna, Tan. On propagation of deletions and annotations through views, PODS 2002, https://doi.org/10.1145/543613.543633 

? 

Q(u,w):-R'(u,x),S(x,y,z),T'(z,w)

select R'.u, T'.w
from R', S, T'
where R'.x=S.x  
and S.z=T'.z

select exists(
  select 1
  from R, S, T
  where R.x=S.x  
  and S.z=T.z)

https://doi.org/10.1145/319732.319740
https://doi.org/10.1145/543613.543633
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Example Reverse Data Management Problems

1. Resilience

R' S T' Q

Q:-R(x),S(x,y,z),T(z)

Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete an output tuples

𝑥 
3
4

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

R S T

|G|=1 

𝑧 
7

true
Q

Dayal, Bernstein. On the correct translation of update operations on relational views, TODS 1982, https://doi.org/10.1145/319732.319740  
Buneman, Khanna, Tan. On propagation of deletions and annotations through views, PODS 2002, https://doi.org/10.1145/543613.543633 
Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, VLDB 2015. https://doi.org/10.14778/2850583.2850592 

Q(u,w):-R'(u,x),S(x,y,z),T'(z,w)

basically identical

A long open problem: for which conjunctive queries is resilience in PTIME? 
(and for which NP-complete?). Only a partial classification known today

https://doi.org/10.1145/319732.319740
https://doi.org/10.1145/543613.543633
https://doi.org/10.14778/2850583.2850592
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𝑢 𝑥 
1 3
1 4
2 3

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

2/3. (Aggregated) Source side-effects (d.p.)

𝑧 𝑤 
7 9

𝑢 𝑤 
1 9
2 9

|G|=1 

Example Reverse Data Management Problems

1. Resilience

R' S T' Q

Q:-R(x),S(x,y,z),T(z)

Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete an output tuples

𝑥 
3
4

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

R S T

|G|=1 

𝑧 
7

true
Q

≥k 

Q(u,w):-R'(u,x),S(x,y,z),T'(z,w)

Hu, Sun, Patwa, Panigrahi, Roy. Aggregated Deletion Propagation for Counting Conjunctive Query Answers. PVLDB 2020. https://doi.org/10.14778/3425879.3425892

Different tractability results!

https://doi.org/10.14778/3425879.3425892
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𝑢 𝑥 
1 3
1 4
2 3

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

2/3. (Aggregated) Source side-effects (d.p.)

𝑧 𝑤 
7 9

𝑢 𝑤 
1 9
2 9

|G|=1 

Example Reverse Data Management Problems

1. Resilience

R' S T' Q

Q:-R(x),S(x,y,z),T(z)

Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete an output tuples

|Δ|=1

𝑥 
3
4

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

R S T

|G|=1 

𝑧 
7

true
Q

≥k 

Q(u,w):-R'(u,x),S(x,y,z),T'(z,w)

Hu, Sun, Patwa, Panigrahi, Roy. Aggregated Deletion Propagation for Counting Conjunctive Query Answers. PVLDB 2020. https://doi.org/10.14778/3425879.3425892

Oops, we deleted more output tuples than needed. 

That is not a concern when minimizing source-side effects.
But when minimizing view-side effects!

source side-effect
view side-effect

https://doi.org/10.14778/3425879.3425892
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Example Reverse Data Management Problems

1. Resilience

R' S T' Q

R' S T' Q

4. View side-effects (deletion propagation)

Q:-R(x),S(x,y,z),T(z)

Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete an output tuples

Delete tuples in order to delete an output tuple,
while minimizing the other output tuples deleted

𝑥 
3
4

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

R S T

|G|=1 

𝑧 
7

true
Q

≥k 

Dayal, Bernstein. On the correct translation of update operations on relational views, TODS 1982, https://doi.org/10.1145/319732.319740  
Buneman, Khanna, Tan. On propagation of deletions and annotations through views, PODS 2002, https://doi.org/10.1145/543613.543633 
Kimelfeld, Vondrak, Williams. Maximizing conjunctive views in deletion propagation, PODS 2011, https://doi.org/10.1145/1989284.1989308 

? ? 

Q(u,w):-R'(u,x),S(x,y,z),T'(z,w)

|Δ|=1

source side-effect

view side-effect

https://doi.org/10.1145/319732.319740
https://doi.org/10.1145/543613.543633
https://doi.org/10.1145/1989284.1989308
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Example Reverse Data Management Problems

1. Resilience

R' S T' Q

R' T' Q

4. View side-effects (deletion propagation)

Q:-R(x),S(x,y,z),T(z)

Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete an output tuples

Delete tuples in order to delete an output tuple,
while minimizing the other output tuples deleted

𝑥 
3
4

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

R S T

|G|=1 

𝑧 
7

true
Q

≥k 

Dayal, Bernstein. On the correct translation of update operations on relational views, TODS 1982, https://doi.org/10.1145/319732.319740  
Buneman, Khanna, Tan. On propagation of deletions and annotations through views, PODS 2002, https://doi.org/10.1145/543613.543633 
Kimelfeld, Vondrak, Williams. Maximizing conjunctive views in deletion propagation, PODS 2011, https://doi.org/10.1145/1989284.1989308 

|Δ|=0
|G|=2 

Q(u,w):-R'(u,x),S(x,y,z),T'(z,w)

|Δ|=1
|G|=1 

Again: Different tractability results!

source side-effectsource side-effect

view side-effect

S

https://doi.org/10.1145/319732.319740
https://doi.org/10.1145/543613.543633
https://doi.org/10.1145/1989284.1989308
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𝑢 𝑥 
1 3
1 4
2 3

𝑥 𝑦 𝑧 
3 5 7
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4 5 7

2/3. (Aggregated) Source side-effects (d.p.)
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7 9

𝑢 𝑤 
1 9
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7 9
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Example Reverse Data Management Problems

1. Resilience

R' S T' Q

R' S T' Q

4/5. (Aggregated) View side-effects (d.p.)

Q:-R(x),S(x,y,z),T(z)

Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete an output tuples

Delete tuples in order to delete an output tuple,
while minimizing the other output tuples deleted

𝑥 
3
4

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

R S T

|G|=1 

𝑧 
7

true
Q

≥k 

|Δ|=0

≥k 

Q(u,w):-R'(u,x),S(x,y,z),T'(z,w)

|Δ|=1

|G|=2 
No prior work yet

source side-effect

view side-effect
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Example Reverse Data Management Problems

1. Resilience

R' S T' Q

Q:-R(x),S(x,y,z),T(z)

Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete an output tuples

Miao, Roy, Yang. Explaining wrong queries using small examples. SIGMOD, 2019. https://doi.org/10.1145/3299869.3319866 
Hu, Sintos. Finding Smallest Witnesses for Conjunctive Queries, ICDT 2024. https://doi.org/10.4230/LIPIcs.ICDT.2024.24 

5. Smallest witness problem
Delete max num. of tuples while keeping all output tuples

𝑥 
3
4

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

R S T

|G|=1 

𝑧 
7

true
Q

𝑢 𝑥 
1 3
1 4
2 3

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

𝑧 𝑤 
7 9

𝑢 𝑤 
1 9
2 9

R' S T' Q

≥k 

? 

𝑢 𝑥 
1 3
1 4
2 3

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

𝑧 𝑤 
7 9

𝑢 𝑤 
1 9
2 9

R' T' Q

4/5. (Aggregated) View side-effects (d.p.)
Delete tuples in order to delete an output tuple,
while minimizing the other output tuples deleted

|Δ|=0

≥k 

Q(u,w):-R'(u,x),S(x,y,z),T'(z,w)

|Δ|=1

|G|=2 

source side-effect

view side-effect

S

https://doi.org/10.1145/3299869.3319866
https://doi.org/10.4230/LIPIcs.ICDT.2024.24
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Example Reverse Data Management Problems

1. Resilience

R' S T' Q

Q:-R(x),S(x,y,z),T(z)

Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete an output tuples

Miao, Roy, Yang. Explaining wrong queries using small examples. SIGMOD, 2019. https://doi.org/10.1145/3299869.3319866 
Hu, Sintos. Finding Smallest Witnesses for Conjunctive Queries, ICDT 2024. https://doi.org/10.4230/LIPIcs.ICDT.2024.24 

5. Smallest witness problem
Delete max num. of tuples while keeping all output tuples

𝑥 
3
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𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

R S T
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1 4
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2 9

R' S T' Q

|G|=3 
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1 4
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3 6 7
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4/5. (Aggregated) View side-effects (d.p.)
Delete tuples in order to delete an output tuple,
while minimizing the other output tuples deleted

|Δ|=0

≥k 

Q(u,w):-R'(u,x),S(x,y,z),T'(z,w)

|Δ|=1

|G|=2 

source side-effect

view side-effect

S

https://doi.org/10.1145/3299869.3319866
https://doi.org/10.4230/LIPIcs.ICDT.2024.24


20

𝑢 𝑥 
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𝑥 𝑦 𝑧 
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2/3. (Aggregated) Source side-effects (d.p.)

𝑧 𝑤 
7 9

𝑢 𝑤 
1 9
2 9

|G|=1 

Example Reverse Data Management Problems

1. Resilience

R' S T' Q

Q:-R(x),S(x,y,z),T(z) Q(u,w):-R'(u,x),S(x,y,z),T'(z,w)

Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete an output tuples

6./7 (Aggregated) Smallest witness problem
Delete max num. of tuples while keeping all output tuples

𝑥 
3
4

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

R S T

|G|=1 

𝑧 
7

true
Q

𝑢 𝑥 
1 3
1 4
2 3

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

𝑧 𝑤 
7 9

𝑢 𝑤 
1 9
2 9

R' S T' Q

|G|=3 

≥k 

≥k 

𝑢 𝑥 
1 3
1 4
2 3

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

𝑧 𝑤 
7 9

𝑢 𝑤 
1 9
2 9

R' S T' Q

4/5. (Aggregated) View side-effects (d.p.)
Delete tuples in order to delete an output tuple,
while minimizing the other output tuples deleted

|Δ|=0

≥k 

|Δ|=1

|G|=2 
No prior work yet

source side-effect

view side-effect
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S

source side-effect

view side-effect

Delete min number of tuples to make Boolean Q false

|G|=1 

|G|=2 

|Δ|=1

𝑢 𝑥 
1 3
1 4
2 3

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

2/3. (Aggregated) Source side-effects (d.p.)

𝑧 𝑤 
7 9

𝑢 𝑤 
1 9
2 9

|G|=1 

A Plethora of Reverse Data Management Problems ...

1. Resilience

R' S T' Q

Q:-R(x),S(x,y,z),T(z) Q(u,w):-R'(u,x),S(x,y,z),T'(z,w)

Delete min number of tuples to delete an output tuples

6./7 (Aggregated) Smallest witness problem
Delete max num. of tuples while keeping all output tuples

𝑥 
3
4

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

R S T
𝑧 
7

true
Q

𝑢 𝑥 
1 3
1 4
2 3

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

𝑧 𝑤 
7 9

𝑢 𝑤 
1 9
2 9

R' S T' Q

|G|=2 

≥k 

≥k 

𝑢 𝑥 
1 3
1 4
2 3

𝑥 𝑦 𝑧 
3 5 7
3 6 7
4 5 7

𝑧 𝑤 
7 9

𝑢 𝑤 
1 9
2 9

R' S T' Q

4/5. (Aggregated) View side-effects (d.p.)
Delete tuples in order to delete an output tuple,
while minimizing the other output tuples deleted

|Δ|=0

≥k 

?
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2. Propose one ILP encoding to solve all these problems

Our topic today: Generalized Deletion Propagation
1. Unify and generalize these problems as instances of "generalized 

deletion propagation"

3. The ILP formulation is solvable in PTIME for all known PTIME cases

• also allows new problem variants

• including difficult cases, such as self-joins, or bag semantics

• including all known PTIME cases for the problems of: resilience 
[VLDB'15], aggregated deletion propagation [VLDB'20], view-
side effects [PODS'11], smallest witness problem [ICDT'24], 
under functional dependencies, and both set and bag 
semantics (where results are known)
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Outline

1. Reverse Data Management (RDM)
2. A magical ILP formulation
3. Take-aways

(An illustrated example: only if time remains)
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Unified Algorithms for Reverse Data Management
Query 𝑄 Database 𝐷

ILP formulation

Encoding algorithm

𝑓∗ = min[𝐜 ⋅ 𝐱]
s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛

ILP formulation:

𝐱 ∊ ℕ$
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Unified Algorithms for Reverse Data Management
Query 𝑄 Database 𝐷

ILP formulation

Encoding algorithm

ILP Solver (e.g. Gurobi)

𝑓∗ = min[𝐜 ⋅ 𝐱]
s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛

ILP formulation:

𝐱 ∊ ℕ$
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𝑥!

𝑥"

Unified Algorithms for Reverse Data Management
Query 𝑄 Database 𝐷

ILP formulation

Fractional Solution 

Encoding algorithm

ILP Solver (e.g. Gurobi)

𝑓∗ = min[𝐜 ⋅ 𝐱]
s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛

ILP formulation:

𝐱 ∊ ℕ$/ℝ$

Polyhedral View:

LP Pre-solve
(Lower Bound)

s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛
constraint vector

constraint matrix



28

𝑥!

𝑥"

Unified Algorithms for Reverse Data Management
Query 𝑄 Database 𝐷

ILP formulation

LP Pre-solve
(Lower Bound) Fractional Solution 

Encoding algorithm

ILP Solver (e.g. Gurobi)

𝑓∗ = min[𝐜 ⋅ 𝐱]
ILP formulation:

𝐱 ∊ ℕ$/ℝ$

Polyhedral View:

s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛

objective vector

constraint vector

constraint matrix
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Fractional Solution 
𝑥!

𝑥"

Unified Algorithms for Reverse Data Management
Query 𝑄 Database 𝐷

ILP formulation

LP Pre-solve
(Lower Bound) Fractional Solution 

Encoding algorithm

ILP Solver (e.g. Gurobi)

Polyhedral View:

𝑓∗ = min[𝐜 ⋅ 𝐱]
ILP formulation:

𝐱 ∊ ℕ$/ℝ$
s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛

𝑓∗=1.5
e.g. 𝐱∗= 1,1.5

objective vector

constraint vector

constraint matrix

extreme point

1

1.5

1,1.5
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𝑥!

𝑥"

Unified Algorithms for Reverse Data Management
Query 𝑄 Database 𝐷

ILP formulation

LP Pre-solve
(Lower Bound)

Heuristics-based
Branch and Bound Integral Solution 

Fractional Solution 

Encoding algorithm

ILP Solver (e.g. Gurobi)

Polyhedral View:

𝑓∗=1.5
e.g. 𝐱∗= 1,1.5

𝑓∗ = min[𝐜 ⋅ 𝐱]
ILP formulation:

𝐱 ∊ ℕ$/ℝ$
s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛
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𝑥!

𝑥"

Unified Algorithms for Reverse Data Management
Query 𝑄 Database 𝐷

ILP formulation

LP Pre-solve
(Lower Bound)

Heuristics-based
Branch and Bound Integral Solution 

Encoding algorithm

ILP Solver (e.g. Gurobi)

Polyhedral View:

𝑓∗ = min[𝐜 ⋅ 𝐱]
ILP formulation:

𝐱 ∊ ℕ$/ℝ$
s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛

Fractional Solution 𝑓∗=1.5
e.g. 𝐱∗= 1,1.5
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𝑥!

𝑥"

Unified Algorithms for Reverse Data Management
Query 𝑄 Database 𝐷

ILP formulation

LP Pre-solve
(Lower Bound)

Heuristics-based
Branch and Bound Integral Solution 

Encoding algorithm

ILP Solver (e.g. Gurobi)

Polyhedral View:

𝑓∗=1
e.g. 𝐱∗= 1,1

L NPC

J PTIME

𝑓∗ = min[𝐜 ⋅ 𝐱]
ILP formulation:

𝐱 ∊ ℕ$/ℝ$
s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛

Fractional Solution 𝑓∗=1.5
e.g. 𝐱∗= 1,1.5
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𝑥!

𝑥"

Unified Algorithms for Reverse Data Management
Query 𝑄 Database 𝐷

ILPs formulation

LP Pre-solve
(Lower Bound)

Heuristics-based
Branch and Bound Integral Solution 

Fractional Solution 

Smoothened
encoding algorithm

ILP Solver (e.g. Gurobi)

𝑓∗ = min[𝐜 ⋅ 𝐱]
s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛

ILP formulation:

𝐱 ∊ ℕ$/ℝ$

Polyhedral View:

𝑓∗=1
e.g. 𝐱∗= 1,1

J PTIME
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𝑥!

𝑥"

Unified Algorithms for Reverse Data Management
Query 𝑄 Database 𝐷

ILPs formulation

LP Pre-solve
(Lower Bound)

Heuristics-based
Branch and Bound Integral Solution 

Fractional Solution 

Smoothened
encoding algorithm

ILP Solver (e.g. Gurobi)

J PTIME

𝑓∗ = min[𝐜 ⋅ 𝐱]
s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛

ILP formulation:

𝐱 ∊ ℕ$/ℝ$

Polyhedral View:

𝑓∗=1
e.g. 𝐱∗= 1,1
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𝑥!

𝑥"

Unified Algorithms for Reverse Data Management
Query 𝑄 Database 𝐷

ILPs formulation

LP Pre-solve
(Lower Bound)

Heuristics-based
Branch and Bound Integral Solution 

Fractional Solution 

Smoothened
encoding algorithm

ILP Solver (e.g. Gurobi)

𝑓∗=1
e.g. 𝐱∗= 1,1

J PTIME

𝑓∗ = min[𝐜 ⋅ 𝐱]
s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛

ILP formulation:

𝐱 ∊ ℕ$/ℝ$

Polyhedral View:

If LP=ILP, then solvers 
can find an opt. integral 

solution efficiently!

J PTIME

𝑓∗=1
e.g. 𝐱∗= 1,1

objective value 𝑓∗

identical !!!

extreme point
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When is LP=ILP according to the literature?

𝑓∗ = min[𝐜 ⋅ 𝐱]
s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛

ILP formulation:

𝐱 ∊ ℕ$/ℝ$
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When is LP=ILP according to the literature: not useful L

• Focus of polyhedral theory mainly on constraint matrix 𝐀. But our PTIME 
constraint matrixes need not be balanced, nor Totally Unimodular, etc.
1. Our complexity results take into account the objective vector 𝐜! 
2. This gives us a separation between the problem under set vs. bag semantics!
3. We use an indirect proof via problem-specific MFMC encodings  J

L

objective vector

L

𝑓∗ = min[𝐜 ⋅ 𝐱]
s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛

ILP formulation:

𝐱 ∊ ℕ$/ℝ$

constraint vector

constraint matrix
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So what do we do to show ILP=LP for PTIME cases?

Polyhedral View

• For an "ideal" 
constraint matrix, 
the vertices 
(extreme points) of 
its polytope are all 
integral

𝑓∗ = min[𝐜 ⋅ 𝐱]
s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛

ILP formulation:

flow formulation

Query 𝑄 Database 𝐷

ILPs formulation

Smoothened 
encoding algorithm

3. COROLLARY: LP = ILP, PTIME J

1. Show correspondence to a flow formulation
2. Constraint matrix represented by a flow 

graph is an "ideal matrix"

𝐱 ∊ ℕ$/ℝ$

This is the idea,
but not yet what 
we actually do
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So what do we do to show ILP=LP for PTIME cases?

Polyhedral View

• For an "ideal" 
constraint matrix, 
the vertices 
(extreme points) of 
its polytope are all 
integral

𝑓∗ = min[𝐜 ⋅ 𝐱]
s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛

ILP formulation:

flow formulation

Query 𝑄 Database 𝐷

ILPs formulation

Smoothened 
encoding algorithm

3. COROLLARY: LP = ILP, PTIME J

1. Show correspondence to a flow formulation
2. Constraint matrix represented by a flow 

graph is an "ideal matrix"

𝐱 ∊ ℕ$/ℝ$

But it is not as easy!
We have fractional extremal points L

fractional points
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So what do we do to show ILP=LP for PTIME cases?

Polyhedral View

• Polytope may have 
non-integral vertices

• The optimal 
solution face 
contains only 
integral vertices

flow formulation

Query 𝑄 Database 𝐷

ILPs formulation

Smoothened 
encoding algorithm

• Showing such correspondences for all 
PTIME cases in all scenarios is non-trivial

• This moves the challenge from algorithm 
development to proofs!

3. COROLLARY: LP = ILP, PTIME J

1. Show correspondence after processing that 
takes the objective vector into account

2. After processing, constraint matrix is ideal

𝑓∗ = min[𝐜 ⋅ 𝐱]
s.t. 𝐀 ⋅ 𝐱 ≥ 𝐛

ILP formulation:

𝐱 ∊ ℕ$/ℝ$

objective vector
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Scalability of Naive vs. Smoothened ILP for PTIME query

𝑄&'()* 𝑥 :−𝑅 𝑥, 𝑎 , 𝑆 𝑥, 𝑏 , 𝑇 𝑥, 𝑐 , 𝑈 𝑥, 𝑑 , 𝑉 𝑥, 𝑒 , 𝐴(𝑥) 
Finding an optimal solution for the Smallest Witness Problem ([SIGMOD'19], [ICDT'24])
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Scalability of Naive vs. Smoothened ILP for PTIME query

𝑄&'()* 𝑥 :−𝑅 𝑥, 𝑦 , 𝑆 𝑥, 𝑧 , 𝑇 𝑥, 𝑢 , 𝑈 𝑥, 𝑣 , 𝑉 𝑥, 𝑤 ,𝑊(𝑥) 
Finding an optimal solution for the Smallest Witness Problem ([SIGMOD'19], [ICDT'24])

How different are the optimal values for 
the ILP formulation and its LP relaxation
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Scalability of Naive vs. Smoothened ILP for PTIME query

𝑄&'()* 𝑥 :−𝑅 𝑥, 𝑎 , 𝑆 𝑥, 𝑏 , 𝑇 𝑥, 𝑐 , 𝑈 𝑥, 𝑑 , 𝑉 𝑥, 𝑒 , 𝐴(𝑥) 
Finding an optimal solution for the Smallest Witness Problem ([SIGMOD'19], [ICDT'24])

403x (2h 2min)

55x

18 sec

How different are the optimal values for 
the ILP formulation and its LP relaxation
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Scalability of Naive vs. Smoothened ILP for PTIME query

𝑄&'()* 𝑥 :−𝑅 𝑥, 𝑎 , 𝑆 𝑥, 𝑏 , 𝑇 𝑥, 𝑐 , 𝑈 𝑥, 𝑑 , 𝑉 𝑥, 𝑒 , 𝐴(𝑥) 
Finding an optimal solution for the Smallest Witness Problem ([SIGMOD'19], [ICDT'24])

403x (2h 2min)

55x

18 sec

How different are the optimal values for 
the ILP formulation and its LP relaxation

We show ILP=LP for all prior 
known PTIME cases across 
prior studied deletion 
propagation problems
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Scalability of Naive vs. Smoothened ILP for PTIME query

𝑄&'()* 𝑥 :−𝑅 𝑥, 𝑎 , 𝑆 𝑥, 𝑏 , 𝑇 𝑥, 𝑐 , 𝑈 𝑥, 𝑑 , 𝑉 𝑥, 𝑒 , 𝐴(𝑥) 
Finding an optimal solution for the Smallest Witness Problem ([SIGMOD'19], [ICDT'24])

How different are the optimal values for 
the ILP formulation and its LP relaxation

2h 2min

18 sec

403x
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Example complicated landscape for resilience
Triangle query
𝑄	∆: −𝑅 𝑥, 𝑦 , 𝑆 𝑦, 𝑧 , 𝑇(𝑥, 𝑧)

Triangle unary
𝑄-∆: −𝑅 𝑥, 𝑦 , 𝑆 𝑦, 𝑧 , 𝑇 𝑥, 𝑧 , 𝐴(𝑥)

NPC PTIME
𝑦

𝑥 𝑧

𝑅

𝐴

𝑆

𝑇

𝑦

𝑥 𝑧

𝑅 𝑆

𝑇
Dual Hypergraph

Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, VLDB 2015. https://doi.org/10.14778/2850583.2850592 

select exists(
  select 1
  from R, S, T
  where R.y=S.y  
  and S.z=T.z
  and T.x=R.x)

select exists(
  select 1
  from R, S, T, A
  where R.y=S.y  
  and S.z=T.z
  and T.x=R.x
  and A.x=R.x)

https://doi.org/10.14778/2850583.2850592
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Example complicated landscape for resilience
Triangle query
𝑄	∆: −𝑅 𝑥, 𝑦 , 𝑆 𝑦, 𝑧 , 𝑇(𝑥, 𝑧)

Triangle unary
𝑄-∆: −𝑅 𝑥, 𝑦 , 𝑆 𝑦, 𝑧 , 𝑇 𝑥, 𝑧 , 𝐴(𝑥)

NPC PTIME
𝑦

𝑥 𝑧

𝑅

𝐴

𝑆

𝑇

𝑦

𝑥 𝑧

𝑅 𝑆

𝑇

NPC under bag semanticsPTIME for FD 𝑥 → 𝑦 
PTIME if provenance happens to be read-once

Dual Hypergraph

Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, VLDB 2015. https://doi.org/10.14778/2850583.2850592 
Makhija, Gatterbauer. A Unified Approach for Resilience and Causal Responsibility with Integer Linear Programming (ILP) and LP Relaxations, SIGMOD 2024. https://doi.org/10.1145/3626715  

select exists(
  select 1
  from R, S, T
  where R.y=S.y  
  and S.z=T.z
  and T.x=R.x)

select exists(
  select 1
  from R, S, T, A
  where R.y=S.y  
  and S.z=T.z
  and T.x=R.x
  and A.x=R.x)

https://doi.org/10.14778/2850583.2850592
https://doi.org/10.1145/3626715


52

Example complicated landscape for resilience
Triangle query
𝑄	∆: −𝑅 𝑥, 𝑦 , 𝑆 𝑦, 𝑧 , 𝑇(𝑥, 𝑧)

Triangle unary
𝑄-∆: −𝑅 𝑥, 𝑦 , 𝑆 𝑦, 𝑧 , 𝑇 𝑥, 𝑧 , 𝐴(𝑥)

NPC PTIME
𝑦

𝑥 𝑧

𝑅

𝐴

𝑆

𝑇

𝑦

𝑥 𝑧

𝑅 𝑆

𝑇

NPC under bag semanticsPTIME for FD 𝑥 → 𝑦 
PTIME if provenance happens to be read-once

Dual Hypergraph

"Coarse-grained instance-optimal" algorithm
Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, VLDB 2015. https://doi.org/10.14778/2850583.2850592 
Makhija, Gatterbauer. A Unified Approach for Resilience and Causal Responsibility with Integer Linear Programming (ILP) and LP Relaxations, SIGMOD 2024. https://doi.org/10.1145/3626715  
Makhija, Gatterbauer: Is ILP all you need for Deletion Propagation? PVLDB 2025.

select exists(
  select 1
  from R, S, T
  where R.y=S.y  
  and S.z=T.z
  and T.x=R.x)

select exists(
  select 1
  from R, S, T, A
  where R.y=S.y  
  and S.z=T.z
  and T.x=R.x
  and A.x=R.x)

https://doi.org/10.14778/2850583.2850592
https://doi.org/10.1145/3626715
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Outline

1. Reverse Data Management (RDM)
2. A magical ILP formulation
3. Take-aways

(An illustrated example: only if time remains)
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A possible shift of focus of algorithm design in database theory?
Current focus: discrete algorithms Future: polyhedral algorithms
Identify tractable cases for a class of problems that can 
be solved with some dedicated discrete algorithm (like 
dynamic programming or greedy) or a reduction to flow

For the hard cases:
• prove hardness via some dedicated reduction from 

some NPC problem.
• optionally design a separate dedicated 

approximation algorithm

Design one "appropriate" ILP program to solve all problems
• "appropriate" here means that their natural LP relaxation 

has the same optimal objective for all PTIME cases 
("LP=ILP"), which proves the ILP can be solved in PTIME.

All cases are covered (including the hard ones) ✓ 
• also approximation algorithms, just stop evaluation early, 

anytime algorithm comes for free ✓

Partial solutions: Often, the algorithm (the dichotomy) 
does not extend to all types of queries like CQs with self-
joins, or problems under bag semantics

Complete solutions: All problem types are covered ✓
(including self-joins or bag semantics)
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A possible shift of focus of algorithm design in database theory?
Current focus: discrete algorithms Future: polyhedral algorithms
Identify tractable cases for a class of problems that can 
be solved with some dedicated discrete algorithm (like 
dynamic programming or greedy) or a reduction to flow

For the hard cases:
• prove hardness via some dedicated reduction from 

some NPC problem.
• optionally design a separate dedicated 

approximation algorithm

Design one "appropriate" ILP program to solve all problems
• "appropriate" here means that their natural LP relaxation 

has the same optimal objective for all PTIME cases 
("LP=ILP"), which proves the ILP can be solved in PTIME.

Partial solutions: Often, the algorithm (the dichotomy) 
does not extend to all types of queries like CQs with self-
joins, or problems under bag semantics

An anonymous concern: "...the ILP constructed is not a simple 
mathematical object... Since the construction given is .... not a 
simple mathematical object, it is not clear to me how deep 
one can push this further by analyzing it."

All cases are covered (including the hard ones) ✓ 
• also approximation algorithms, just stop evaluation early, 

anytime algorithm comes for free ✓

Complete solutions: All problem types are covered ✓
(including self-joins or bag semantics)
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A possible shift of focus of algorithm design in database theory?
Current focus: discrete algorithms Future: polyhedral algorithms
Identify tractable cases for a class of problems that can 
be solved with some dedicated discrete algorithm (like 
dynamic programming or greedy) or a reduction to flow

For the hard cases:
• prove hardness via some dedicated reduction from 

some NPC problem.
• optionally design a separate dedicated 

approximation algorithm

Practical aspects: usually only some problem cases are 
solved, hard cases often not treated, the practical 
nature of the algorithms is not always clear

Partial solutions: Often, the algorithm (the dichotomy) 
does not extend to all types of queries like CQs with self-
joins, or problems under bag semantics

Th
eo

ry

Practical aspects: it works from day one ✓

Design one "appropriate" ILP program to solve all problems
• "appropriate" here means that their natural LP relaxation 

has the same optimal objective for all PTIME cases 
("LP=ILP"), which proves the ILP can be solved in PTIME.

All cases are covered (including the hard ones) ✓ 
• also approximation algorithms, just stop evaluation early, 

anytime algorithm comes for free ✓

Complete solutions: All problem types are covered ✓
(including self-joins or bag semantics)
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Take-aways: "Is ILP all you need? ..."
• Polyhedral theory solves many database theory problems "out of the box". 

- Shift in focus: instead of trying to find a dedicated PTIME algorithm for PTIME cases, start with a general 
formulation and prove it finishes in PTIME for PTIME cases.

- There is some magic in getting the "right" formulation (ILP = LP for PTIME), we don't yet have "the" recipe
- The proofs for LP=ILP go beyond standard optimization literature. Polyhedral theory alone does not help.

• The overall philosophy is way more general than reverse data management.
- Makhija, Gatterbauer. Minimally Factorizing the Provenance of Self-Join Free Conjunctive Queries, PODS 2024. 

https://doi.org/10.1145/3651605 
- What about consistent query answering? And even more general logic optimization problems?

• More concretely open: Unifying deletion and insertion propagation ("change 
propagation"), basically positive and negative provenance / Why or Why not?
- Meliou, Gatterbauer, Moore, Suciu. Why so? or Why no? Functional causality for explaining query answers. MUD 2010. 

https://arxiv.org/pdf/0912.5340 

• Please also talk to Neha J
Faculty at UMass Amherst from Fall'25

Thank you J

https://doi.org/10.1145/3651605
https://arxiv.org/pdf/0912.5340

