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Data Management

QUERY EVALUATION:
A transformation of the input to the output
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Reverse Data Management (RDM)

QUERY EVALUATION:
A transformation of the input to the output
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Intervention

REVERSE DATA MIANAGEMENT (RDM):
What are the required changes to the input,
in order to achieve a desired output?

Meliou, Gatterbauer, Suciu. Reverse Data Management. VLDB 2011 Vision track. https://doi.org/10.14778/3402755.3402803
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Data Management (RDM): 2 types of Explanations

QUERY EVALUATION:
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(RDM):

What are the required changes to the input,

in order to achieve a desired output?

Two types of explanations in RDM,

A transformation of the input to the output naming used from Explainable Al (XAl):

1. Contrastive (counterfactual):

2. Abductive (factual):

Meliou, Gatterbauer, Suciu. Reverse Data Management. VLDB 2011 Vision track. https://doi.org/10.14778/3402755.3402803

Marques-Silva. Logic-Based Explainability in Machine Learning. Reasoning Web. Causality, Explanations and Declarative Knowledge. 2023. https://doi.org/10.1007/978-3-031-31414-8 2
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Data Management (RDM): 2 types of Explanations

QUERY EVALUATION: .
A transformation of the input to the output

Two types of explanations in RDM,

naming used from Explainable Al (XAl):

1. Contrastive (counterfactual): set of
tuples (features) of min size that are
- sufficient to change an output (prediction)

2. Abductive (factual):
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N— S
(RDM):

What are the required changes to the input,
in order to achieve a desired output? '

Meliou, Gatterbauer, Suciu. Reverse Data Management. VLDB 2011 Vision track. https://doi.org/10.14778/3402755.3402803
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Data Management (RDM): 2 types of Explanations

QUERY EVALUATION: .
A transformation of the input to the output

Two types of explanations in RDM,

naming used from Explainable Al (XAl):

1. Contrastive (counterfactual): set of
tuples (features) of min size that are
- sufficient to change an output (prediction)

= min deletions of tuples
(e.g., resilience, deletion propagation)

2. Abductive (factual): set of tuples
. (features) of min size that are sufficient

D Q
< > ‘
: Output
Transformation
N— S
(RDM):

What are the required changes to the input,
in order to achieve a desired output? '

for ensuring a certain output (prediction)

= max deletions of tuples
(e.g., smallest witness problem)

= DELETION PROPAGATION

Meliou, Gatterbauer, Suciu. Reverse Data Management. VLDB 2011 Vision track. https://doi.org/10.14778/3402755.3402803

Marques-Silva. Logic-Based Explainability in Machine Learning. Reasoning Web. Causality, Explanations and Declarative Knowledge. 2023. https://doi.org/10.1007/978-3-031-31414-8 2 7
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Example Reverse Data Management Problems
Q:-R(x),S(x,y,z),T(z)

1. Resilience
Delete min number of tuples to make Boolean Q false
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select exists(
select 1
from R, S, T
where R.x=S.Xx
and S.z=T.z)



Example Reverse Data Management Problems
Q:-R(x),S(x,y,2),T(z)

1. Resilience
Delete min number of tuples to make Boolean Q false

R S

T Q
r B e

select exists(
select 1
from R, S, T
where R.x=S.Xx
and S.z=T.z)

Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, VLDB 2015. https://doi.org/10.14778/2850583.2850592
Makhija, Gatterbauer. A Unified Approach for Resilience and Causal Responsibility with Integer Linear Programming (ILP) and LP Relaxations, SIGMOD 2024. https://doi.org/10.1145/3626715
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Example Reverse Data Management Problems

Q:-R(X)IS(XIYIZ)IT(Z) Q(UIW):-R'(uIX)IS(XIyIZ)IT'(ZIW)
1. Resilience 2. Source side-effects (deletion propagation)
Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete an output tuples
R S T Q R' S T Q
) e =)
3-—1{3]5]7} 7 1[3}-{3]5]7]{7]9 ™
al. - 3l6]7]/ 1]4}/1316/7)/ 2|9
......... [alsl7 53¢ [als[7) ,?

select exists(

select 1 select R'.u, T'.w

fromR, S, T from R', S, T'

where R.x=S.X where R'.x=S.Xx

and S.z=T.z) and S.z=T'.z

Dayal, Bernstein. On the correct translation of update operations on relational views, TODS 1982, https://doi.org/10.1145/319732.319740
Buneman, Khanna, Tan. On propagation of deletions and annotations through views, PODS 2002, https://doi.org/10.1145/543613.543633
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Example Reverse Data Management Problems

Q:-R(X)IS(XIYIZ)IT(Z) Q(UIW):-R'(uIX)IS(XIyIZ)IT'(ZIW)
1. Resilience 2. Source side-effects (deletion propagation)
Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete an output tuples
R S T Q R' S T Q
3 13]5]7] ) 1[3}3|5[7} ™
41 316|7(/ 1|4]/1316|7|/ 2|9
,,,,,,,,, AEE; >3V [als7)

\ basically identical /

A long open problew: for which conjunctive queries is resilience in PTIME?
(and for which NP-complete?). Ouly a partial classification knoww today

Dayal, Bernstein. On the correct translation of update operations on relational views, TODS 1982, https://doi.org/10.1145/319732.319740
Buneman, Khanna, Tan. On propagation of deletions and annotations through views, PODS 2002, https://doi.org/10.1145/543613.543633 12
Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, VLDB 2015. https://doi.org/10.14778/2850583.2850592



https://doi.org/10.1145/319732.319740
https://doi.org/10.1145/543613.543633
https://doi.org/10.14778/2850583.2850592

Example Reverse Data Management Problems

Q:-R(X)IS(XIYIZ)IT(Z) Q(UIW):-R'(uIX)IS(XIyIZ)IT'(ZIW)
1. Resilience 2/3. (Aggregated) Source side-effects (d.p.)
Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete >k output tuples
R S T Q R' S T Q
3)13]5]7) > 1|3} (357 ™
4f. 3]6]7(/ 1|4]/(3]6]7}/ 219
......... ._ 4 5 7 2 3 4 5 7

Different +ractability results!

Hu, Sun, Patwa, Panigrahi, Roy. Aggregated Deletion Propagation for Counting Conjunctive Query Answers. PVLDB 2020. https://doi.org/10.14778/3425879.3425892
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Example Reverse Data Management Problems

Q:-R(X)IS(XIYIZ)IT(Z) Q(UIW):-R'(uIX)IS(XIyIZ)IT'(ZIW)
1. Resilience 2/3. (Aggregated) Source side-effects (d.p.)
Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete >k output tuples
R S T Q R' S T Q
B ) T 2 N
3}—3|5|7]] 13}—3[5]7} ™
4l 3|6[7]7 14} /13]6]7)/ 2l [Al=1
""""" 14]5|7 23] 4157/ view side-effect

source side-effect /'

Oops, we deleted wmore output tuples than weeded.

That is not a concern when minimizing source-side effects.
But when minimizing view-side effects!

Hu, Sun, Patwa, Panigrahi, Roy. Aggregated Deletion Propagation for Counting Conjunctive Query Answers. PVLDB 2020. https://doi.org/10.14778/3425879.3425892
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Example Reverse Data Management Problems

Q:-R(X)IS(XIYIZ)IT(Z) Q(UIW):-R'(uIX)IS(XIyIZ)IT'(ZIW)
1. Resilience 2/3. (Aggregated) Source side-effects (d.p.)
Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete >k output tuples
R S T Q R' S T Q
a # rue % #
3| 13]5]7) 13} 13]5[7} i
sl - 3l6l7] 14| /13]6]7]/ 21 [Al=1
......... ._ 4 5 7 2 3 7

source side-effect

4. View side-effects (deletion propagation)

Delete tuples in order to delete an output tuple,
while minimizing the other output tuples deleted

R" S T a
m
1[3] 7l ‘ |

Dayal, Bernstein. On the correct translation of update operations on relational views, TODS 1982, https://doi.org/10.1145/319732.319740
Buneman, Khanna, Tan. On propagation of deletions and annotations through views, PODS 2002, https://doi.org/10.1145/543613.543633
Kimelfeld, Vondrak, Williams. Maximizing conjunctive views in deletion propagation, PODS 2011, https://doi.org/10.1145/1989284.1989308

view side-effect
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Example Reverse Data Management Problems

Q:-R(X)IS(XIYIZ)IT(Z) Q(UIW):-R'(uIX)IS(XIyIZ)IT'(ZIW)
1. Resilience 2/3. (Aggregated) Source side-effects (d.p.)
Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete >k output tuples
R S T Q R' S T Q
3315/ \ M 113} 7 . J2s
al - {3l6]7] 1|4 /(3|6|7]/ 2l [Al=1
......... ._ 4 5 7 2 3 7

source side-effect

4. View side-effects (deletion propagation)

Delete tuples in order to delete an output tuple,
while minimizing the other output tuples deleted

R' S T' Q
Again: Different tractability results! =
; - B

Dayal, Bernstein. On the correct translation of update operations on relational views, TODS 1982, https://doi.org/10.1145/319732.319740
Buneman, Khanna, Tan. On propagation of deletions and annotations through views, PODS 2002, https://doi.org/10.1145/543613.543633
Kimelfeld, Vondrak, Williams. Maximizing conjunctive views in deletion propagation, PODS 2011, https://doi.org/10.1145/1989284.1989308

view side-effect
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Example Reverse Data Management Problems

Q:-R(x),S(x,y,2),T(z)

1. Resilience
Delete min number of tuples to make Boolean Q false

R S

T Q

No prior work yet

Q(u,w):-R'(u,x),S(x,y,z),T'(z,w)

2/3. (Aggregated) Source side-effects (d.p.)

Delete min number of tuples to delete >k output tuples

R" S T Q
o )

source side-effect
4/5. (Aggregated) View side-effects (d.p.)

Delete tuples in order to delete >k output tuple,
while minimizing the other output tuples deleted

R" S Q

Tl
‘
—13(5|7}- 1719 ™

view side-effect

17



Example Reverse Data Management Problems

Q:-R(X)IS(XIYIZ)IT(Z) Q(UIW):-R'(uIX)IS(XIyIZ)IT'(ZIW)
1. Resilience 2/3. (Aggregated) Source side-effects (d.p.)
Delete min number of tuples to make Boolean Q false Delete min number of tuples to delete >k output tuples
R S T Q R’ S T Q
3)~—13[5|7| ] 1|3}43[5[7| ™
4l 3lel7]/ 1[4] /{3]6]7}/ 2l [Al=1
......... Talsl7 AE 7
source side-effect
_ 4/5. (Aggregated) View side-effects (d.p.)
5. Smallest witness problem Delete tuples in order to delete 2k output tuple,
Delete max num. of tuples while keeping all output tuples while minimizing the other output tuples deleted

R’ S T Q R' S T Q

qq qq
1719 ‘ 1|9 /19 ‘ T -
2|9 2|9 ‘EE:’

view side-effect

Miao, Roy, Yang. Explaining wrong queries using small examples. SIGMOD, 2019. https://doi.org/10.1145/3299869.3319866
Hu, Sintos. Finding Smallest Witnesses for Conjunctive Queries, ICDT 2024. https://doi.org/10.4230/LIPIcs.ICDT.2024.24
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Example Reverse Data Management Problems

Q:-R(x),S(x,y,2),T(z)

1. Resilience
Delete min number of tuples to make Boolean Q false

R S T Q

5. Smallest witness problem
Delete max num. of tuples while keeping all output tuples

R’ S T Q
m ‘
1113 43]5]7 y I 9 119

Miao, Roy, Yang. Explaining wrong queries using small examples. SIGMOD, 2019. https://doi.org/10.1145/3299869.3319866

Q(u,w):-R'(u,x),S(x,y,z),T'(z,w)

2/3. (Aggregated) Source side-effects (d.p.)

Delete min number of tuples to delete >k output tuples

R' S T Q
0 )
ilal Blel7] 2l 1A1=1

source side-effect
4/5. (Aggregated) View side-effects (d.p.)

Delete tuples in order to delete >k output tuple,
while minimizing the other output tuples deleted

R" S Q

Tl
2 N

BITA =0

2[3) [4[s]7] IT|=2

Hu, Sintos. Finding Smallest Witnesses for Conjunctive Queries, ICDT 2024. https://doi.org/10.4230/LIPIcs.ICDT.2024.24

view side-effect
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Example Reverse Data Management Problems

Q:-R(x),S(x,y,2),T(z)

1. Resilience
Delete min number of tuples to make Boolean Q false

R S

T Q

6./7 (Aggregated) Smallest witness problem

Delete max num. of tuples while keeping >k output tuples

R" S Q

Tl
m ‘

No prior work yet

Q(u,w):-R'(u,x),S(x,y,z),T'(z,w)

2/3. (Aggregated) Source side-effects (d.p.)

Delete min number of tuples to delete >k output tuples

e o §

source side-effect
4/5. (Aggregated) View side-effects (d.p.)

Delete tuples in order to delete >k output tuple,
while minimizing the other output tuples deleted

R" S Q

Tl
=)
4. 13167/ 219
7

£
=
=<

U (o |

N
2l [Al=1

NN N

~lwlw

Loy |

GUaRY (-
3 T =2 view side-effect
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A Plethora of Reverse Data Management Problems ...

?
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Our topic today: Generalized Deletion Propagation

1. Unify and generalize these problems as instances of "generalized
deletion propagation”
* also allows new problem variants

2. Propose one ILP encoding to solve all these problems
* including difficult cases, such as self-joins, or bag semantics

3. The ILP formulation is solvable in PTIME for all known PTIME cases
* including all known PTIME cases for the problems of: resilience
[VLDB'15], aggregated deletion propagation [VLDB'20], view-
side effects [PODS'11], smallest witness problem [ICDT'24],

under functional dependencies, and both set and bag

semantics (where results are known) .



2. A magical ILP formulation

23



Unified Algorithms for Reverse Data Management

ILP formulation:
f* = min|[c - X]
st.A-x=>Db
x € N"

Query Q Database D

Gncoding algorithn)

I LP formulation

25



Unified Algorithms for Reverse Data Management

ILP formulation:

Query Q Database D

f* = min|[c - X] \/

st.tA-x=>Db G o _h)
ncoding algorithm
x € N"

I LP formulation

/ILP Solver (e.g. Gurobm

( )
)

- /

26



Unified Algorithms for Reverse Data Management

TLP formulation:
f* — min[c . X] constraint vector
s.t. }A -Xx=>b
constraiut matric g e N /R"

Polyhedral View:

Query Q

Database D

~.

Gncoding algorithn)

I LP formulation

/ILP Solver (e.g. Gurobm

LP Pre-solve \
(Lower Bound) )

(

» Fractional Solution

J

/

27



Unified Algorithms for Reverse Data Management

ILP formulation:

f* — min[c . X] constrant vector

objective vector

st. A-x>Dbh
o

constraint matrix

Polyhedral View:

x € N*/R"

Query Q

Database D

~.

Gncoding algorithn)

I LP formulation

/ILP Solver (e.g. Gurobm

LP Pre-solve \
(Lower Bound) )

(

» Fractional Solution

J

/
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Unified Algorithms for Reverse Data Management

ILP formulation:

objective vector

f* — min[c : X] constraint vector
4
st.A-x=D
a

constraint matrix

Polyhedral View:

sz

x € N*/R"

extreme point(1,1.5)

Query Q Database D

Gncoding algorithn)

I LP formulation

/ILP Solver (e.g. Gurobm

LP Pre-solve \

» Fractional Solution

(Lower Bound) )

)

- /

f*=1.5
e.g. x*=(1,1.5)

29



Unified Algorithms for Reverse Data Management

ILP formulation:
f* = min|c - X]
st. A-x=>Db
x € N*/R"
Polyhedral View:
o

Query Q

Database D

~.

Gncoding algorithn)

I LP formulation

/ILP Solver (e.g. Gurobm

LP Pre-solve \
(Lower Bound) )

[ Heuristics-based \

» Fractional Solution

Branch and Bound)

o

/

" Integral Solution

f*=1.5
e.g. x*=(1,1.5)
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Unified Algorithms for Reverse Data Management

ILP formulation:
f* = min|c - X]
st. A-x=>Db
x € N*/R"
Polyhedral View:
o

Query Q

Database D

~.

Gncoding algorithn)

I LP formulation

/ILP Solver (e.g. Gurobm

LP Pre-solve \
(Lower Bound) )

[ Heuristics-based \

» Fractional Solution

Branch and Bound)

o

/

" Integral Solution

f*=1.5
e.g. x*=(1,1.5)
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Unified Algorithms for Reverse Data Management

ILP formulation:

. _ Query Q| |Database D
f* = min|c - X] \/
st. A-x=Db G o _h)
ncoding algorithm

x € N*/R"

I LP formulation

Polyhedral View:

X2

o ® ®
@) /ILP Solver (e.g. Gurobm
LP Pre-solve \ ‘ , ioal f*=1.5
(Lower Bound) J Fractional Solution e x=(1.15)
© PTIME
Heuristics-based \ ‘ : *=1
[Branch andBound | | Integral Solution ]er_g. x*=(1,1)
N /  ®NPC
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Unified Algorithms for Reverse Data Management

ILP formulation:
f* = min|[c - X]
st.A-x=>Db
x € N*/R"
Polyhedral View:
e 6 o o o o

Query Q

Database D

~.

Smoothened
encoding algorithm

ILP, for

mulation

/ILP Solver (e.g. Gurobm

LP Pre-solve \

(Lower

Bound) )

[ Heuristics-based \

» Fractional Solution

© PTIME

Branch and Bound)

o

/

" Integral Solution
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Unified Algorithms for Reverse Data Management

ILP formulation:
f* = min|[c - X]
st.A-x=>Db
x € N*/R"
Polyhedral View:
e 6 o o o o

Query Q

Database D

~.

Smoothened
encoding algorithm

ILP, for

mulation

/ILP Solver (e.g. Gurobm

LP Pre-solve \

(Lower

Bound) )

[ Heuristics-based \

» Fractional Solution

© PTIME

Branch and Bound)

o

/

" Integral Solution
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Unified Algorithms for Reverse Data Management

ILP formulation:

Query Q Database D Obj@&‘ﬂ\/@ value f*
f* = min[c - X] \/ /
st.tA-x=>Db |
n mn C omoothe ne.‘:h) @ If LP=ILP, then solvers
x €N /R <[1EoTine e g can find an opt. integral

_ solution efficiently!
Polyhedral View: ) y

X2 extreme point ILP_ formulation

/ILP Solver (e.g. Gurobm

LP Pre-solve )
(Lower Bound) )

Fractional Solution| f =1

£.x"'=(1,1)
© PTIME

identical Wl

\ 4

A 4

integral Solution | f =1
e.g. x*=(1,1)

Heuristics-based \
Branch and Bound |

\_ /' ©OPTIME
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When is LP=ILP according to the literature?

THEORY OF
LINEAR AND INTEGER
PROGRAMMING

ILP formulation:

f* = min|c - X]

st. A-x>b
x € N*/R"

83 Balanced and unimodular hypergraphs .................. 1439
83.1 Balanced hypergraphs........... ... ... ... ... ... .. ..., 1439
83.2 Characterizations of balanced hypergraphs............... 1440

83.2a Totally balanced matrices........................ 1444
83.2b Examples of balanced hypergraphs................ 1447
83.2c Balanced 0,+1 matrices ......................... 1447
83.3 Unimodular hypergraphs .............. ... i, 1448
83.3a Furthermnotes ............. ... ... i, 1450

Alexander Schrijver
[WILEY-INTERSCIENCE SERIES IN DISCRETE MATHEMATICS AND OFTIME

Alexander Schrijver

Combinatorial
Optimization
Polyhedra and Efficiency

Volume A-C

36



When is LP=ILP according to the literature: not useful ®

ILP formulation:
Alexander Schrijver
‘ . exander Schrijve
f* = min]|c - X] Y
st. A-x=> Combinatorial
x € N* /R" Optimization
83 Balanced and unimodular hypergraphs ........ Z7\..... 1439 Polyhedra and Efficiency
83.1 Balanced hypergraphs....................... m ..... 1439 S Volume A.C
83.2 Characterizations of balanced hypergraphs.......7....... 1440
83.2a Totally balanced matrices........................ 1444
83.2b Examples of balanced hypergraphs................ 1447
83.2c Balanced 0,1 matrices ......................... 1447
83.3 Unimodular hypergraphs .................... () - - 1448 A‘“'H AAAAAAAA -
83.3a Furthernotes ........................} (. ... 1450
* Focus of polyhedral theory mainly on . But our PTIME

constraint matrixes need not be balanced, nor Totally Unimodular, etc.

1. Our complexity results take into account the |
2. This gives us a separation between the problem under set vs. bag semantics!

3. We use an indirect proof via problem-specific MFMC encodings ©

37



So what do we do to show |ILP=L

ILP formulation:
f* = min|[c - X]
st.A-x=>b
x € N*/R"

Polyhedral View

* For an "ideal"
constraint matrix,
the vertices
(extreme points) of
its polytope are all

Query Q Database D

P for PTIME cases?

This is the idea,
\/ but vot yet what

Smoothened we actually do
encoding algorithm
ILP, formulation [« » flow formulation

@ 1. Show correspondence to a flow formulation
2. Constraint matrix represented by a flow

graph is an "ideal matrix"
3. COROLLARY: LP = ILP, PTIME ©

38



So what do we do to show |ILP=LP for PTIME cases?

ILP formulation:
f* = min|[c - X]
st.A-x=>b
x € N*/R"

Polyhedral View

* For an "ideal"
constraint matrix,
the vertices
(extreme points) of
its polytope are all

\ integral

fractiovnal points

Query Q Database D

~.

Smoothened
encoding algorithm

ILP, formulation

. flonulation

@ 1. Show correspondence to aflow formulation
2.

Constraint matrix represented by a flow
graph is an "ide
3. COROLLARY: LP= ILP, PTIME ©

But it is not as easy!

we have fractional extremal points ®
39



So what do we do to show |ILP=LP for PTIME cases?

ILP formulation:

Query Q Database D

f* = min]|c - X]
X=>Db \“/

5.t Smoothened
X € Nn/]Rn encoding algorithm
Polyhedral View ILP, formulation [« » flow formulation

@ 1. Show correspondence after processing that

e The takes the into account
2. After processing, constraint matrix is ideal
contains only 3. COROLLARY: LP = ILP, PTIME ©

* Polytope may have
non-integral vertices

@  Showing such correspondences for all
k=4 PTIME cases in all scenarios is non-trivial

* This moves the challenge from algorithm
development to proofs!
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Scalability of Naive vs. Smoothened ILP for PTIME query

Finding an optimal solution for the Smallest Witness Problem ([SIGMOD'19], [ICDT'24])
Qsstar(¥): —R(x,a),S(x,b), T(x,¢), U(x,d),V(x,e), A(x)

5,
10°=210p (naive)

104

1031

102

Solve Time (s)

101

10°-

10-1-
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Number of Tuples



Scalability of Naive vs. Smoothened ILP for PTIME query

Finding an optimal solution for the Smallest Witness Problem ([SIGMOD'19], [ICDT'24])

QSstar(x): _R(x’ y)! S(.X', Z), T(x, U,), U(x, U), V(x; W); W(X)

How different are the optimal values for
the TLP formulation and i+s LP relaxation

10°- . 1.4 :
i—— |LP (naive) —— |LP (naive)
1-2- LP (naive) —=— LP (naive)
104'5 1.3-
= 103; 1.2-
] [l
E 102- S
Q < 1 1
3 101
wn :
] 1
100'5
10 104 10° 0-9 104 10°
Number of Tuples Number of Tuples
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Scalability of Naive vs. Smoothened ILP for PTIME query

Finding an optimal solution for the Smallest Witness Problem ([SIGMOD'19], [ICDT'24])

QSstar(x): —R(X, Cl), S(X, b)) T(X, C), U(X, d)r V(x; 6), A(.X')

10° .
i—+—|LP (naive)
]-8-LP (naive)
10%4—— ILP (smooth)
N ] LP (smooth)
< 103;
v ;
E |
= 107
¢
6 101_E ,,,,,
n t-
10°4
10-14

403x (2h 2min)

-
Py
-7
-

-
’f

-
’¢

L
-

160

Number of Tuples

1.4

How different are the optimal values for
the TLP formulation and i+s LP relaxation

—— |LP (naive)
—=— LP (naive)

B

Number of Tuples

1o’
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Scalability of Naive vs. Smoothened ILP for PTIME query

Finding an optimal solution for the Smallest Witness Problem ([SIGMOD'19], [ICDT'24])
Qsstar(¥): —R(x,a),S(x,b), T(x,¢), U(x,d),V(x,e), A(x)

How different are the optimal values for
the TLP formulation and i+s LP relaxation

5,
10 E—*—ILP((naive)) 1.4 —*—:—LPP((naive))
1-2- LP (naive)  403x (2h 2min —&-LP (naive
1044—— ILP (smooth) 03x ) 1.34{—— ILP (smooth)
LP (smooth) LP (smooth)
0 103_; ,,,,, 1. We show ILP=LP for all prior
GE) i BBy [ LT - known PTIME cases across
= 10244  f o7 8 prior studied deletion
v ; - g 11 propagation problems
o 10'3 __--7"
L il 14—
10°-
10— —————— 0.9 —————— - —
104 10° 104 10°
Number of Tuples Number of Tuples
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Scalability of Naive vs. Smoothened ILP for PTIME query

Finding an optimal solution for the Smallest Witness Problem ([SIGMOD'19], [ICDT'24])
Qsstar(¥): —R(x,a),S(x,b), T(x,¢), U(x,d),V(x,e), A(x)

How different are the optimal values for
the TLP formulation and i+s LP relaxation

10°- : 7 1.4 .
i—— ILP (naive) Fé —— ILP (naive)
1-8- LP (naive) )/ —=— LP (naive)
1044~ ILP (smooth) 2h 2min 1.31—— ILP (smooth)
. {-=- LP (smooth) P —=— LP (smooth)
wn 2
= 5 T.:2-
: -
Q ,q ]. 1'
=
v
]_D_l I -.'- . I-":';-I..I "' LELELLLL! !' HEARLELAT | LR L LA e LR ELELLAL T T ITT T T 1T U D.g LEGLEURAAE L | LEELBER AL | LENLELERLE | LULELELELLL e e E TR LI | Ty=Fpitelnl
10° 10! 102 103 10% 10° 10° 107 108 10° 10! 104 103 10% 10° 10° 107 108
Number of Witnesses Number of Withesses

46



Example complicated landscape for resilience

Triangle query Triangle unary
Q% —R(x,y),5(y,2),T(x,2) Q% —R(x,y),S(y,2),T(x,z), A(x)
Dual Hyperagraph

select exists( select exists(

select 1 select 1
from R, S, T from R, S, T, A
where R.y=S.y where R.y=S.y
and S.z=T.z and S.z=T.z
and T.x=R.Xx) and T.x=R.x

and A.x=R.x)

Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, VLDB 2015. https://doi.org/10.14778/2850583.2850592
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Example complicated landscape for resilience

Triangle query Triangle unary
Q% —R(x,y),5(y,2),T(x,2) Q% —R(x,y),S(y,2),T(x,z), A(x)
Dual Hyperagraph

select exists( select exists(

select 1 select 1
from R, S, T from R, S, T, A
where R.y=S.y where R.y=S.y
and S.z=T.z and S.z=T.z
and T.x=R.Xx) and T.x=R.x

and A.x=R.x)

NPC PTIME
PTIME for FDx — 7y NPC under bag semantics
PTIME if provenance happens to be read-once

Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, VLDB 2015. https://doi.org/10.14778/2850583.2850592
Makhija, Gatterbauer. A Unified Approach for Resilience and Causal Responsibility with Integer Linear Programming (ILP) and LP Relaxations, SIGMOD 2024. https://doi.org/10.1145/3626715
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Example complicated landscape for resilience

Triangle query Triangle unary
Q% —R(x,y),5(y,2),T(x,2) Q% —R(x,y),S(y,2),T(x,z), A(x)

Dual Hyperagraph

select exists( select exists(

select 1 select 1
from R, S, T from R, S, T, A
where R.y=S.y where R.y=S.y
and S.z=T.z and S.z=T.z
and T.x=R.Xx) and T.x=R.x

and A.x=R.x)

NPC PTIME
PTIME for FDx — 7y NPC under bag semantics

PTIME if provenance happens to be read-once
"Coarse-graived instance-optimal” algorithm

Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, VLDB 2015. https://doi.org/10.14778/2850583.2850592
Makhija, Gatterbauer. A Unified Approach for Resilience and Causal Responsibility with Integer Linear Programming (ILP) and LP Relaxations, SIGMOD 2024. https://doi.org/10.1145/3626715
Makhija, Gatterbauer: Is ILP all you need for Deletion Propagation? PVLDB 2025.
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3. Take-aways
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A possible shift of focus of algorithm design in database theory?

Current focus: discrete algorithms

|dentify tractable cases for a class of problems that can
be solved with some dedicated discrete algorithm (like
dynamic programming or greedy) or a reduction to flow

For the hard cases:
* prove hardness via some dedicated reduction from
some NPC problem.
» optionally design a separate dedicated
approximation algorithm

Partial solutions: Often, the algorithm (the dichotomy)
does not extend to all types of queries like CQs with self-
joins, or problems under bag semantics

Future: polyhedral algorithms

Design one "appropriate" ILP program to solve all problems
» "appropriate" here means that their natural LP relaxation
has the same optimal objective for all PTIME cases
("LP=ILP"), which proves the ILP can be solved in PTIME.

All cases are covered (including the hard ones) v/
* also approximation algorithms, just stop evaluation early,
anytime algorithm comes for free v/

Complete solutions: All problem types are covered v/
(including self-joins or bag semantics)
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A possible shift of focus of algorithm design in database theory?

Current focus: discrete algorithms Future: polyhedral algorithms

|dentify tractable cases for a class of problems that can Design one "appropriate" ILP program to solve all problems
be solved with some dedicated discrete algorithm (like » "appropriate" here means that their natural LP relaxation
dynamic programming or greedy) or a reduction to flow has the same optimal objective for all PTIME cases

("LP=ILP"), which proves the ILP can be solved in PTIME.
For the hard cases:

* prove hardness via some dedicated reduction from
some NPC problem.

» optionally design a separate dedicated
approximation algorithm

All cases are covered (including the hard ones) v/
* also approximation algorithms, just stop evaluation early,
anytime algorithm comes for free v/

Partial solutions: Often, the algorithm (the dichotomy) Complete solutions: All problem types are covered v/
does not extend to all types of queries like CQs with self- (including self-joins or bag semantics)
joins, or problems under bag semantics

An anonymous concern: "...the ILP constructed is not a simple
mathematical object... Since the construction given is .... not a
simple mathematical object, it is not clear to me how deep
one can push this further by analyzing it."
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A possible shift of focus of algorithm design in database theory?

Theory

Current focus: discrete algorithms

[ Identify tractable cases for a class of problems that can

be solved with some dedicated discrete algorithm (like
dynamic programming or greedy) or a reduction to flow

For the hard cases:
* prove hardness via some dedicated reduction from
some NPC problem.
» optionally design a separate dedicated
approximation algorithm

Partial solutions: Often, the algorithm (the dichotomy)
does not extend to all types of queries like CQs with self-
joins, or problems under bag semantics

Practical aspects: usually only some problem cases are
solved, hard cases often not treated, the practical
nature of the algorithms is not always clear

Future: polyhedral algorithms

Design one "appropriate" ILP program to solve all problems

» "appropriate" here means that their natural LP relaxation
has the same optimal objective for all PTIME cases
("LP=ILP"), which proves the ILP can be solved in PTIME.

All cases are covered (including the hard ones) v/
* also approximation algorithms, just stop evaluation early,
anytime algorithm comes for free v/

Complete solutions: All problem types are covered v/
(including self-joins or bag semantics)

Practical aspects: it works from day one v/
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Take-aways: "Is ILP all you need? ..."

Polyhedral theory solves many database theory problems "out of the box".

— Shift in focus: instead of trying to find a dedicated PTIME algorithm for PTIME cases, start with a general
formulation and prove it finishes in PTIME for PTIME cases.

— There is some magic in getting the "right" formulation (ILP = LP for PTIME), we don't yet have "the" recipe
— The proofs for LP=ILP go beyond standard optimization literature. Polyhedral theory alone does not help.

« The overall philosophy is way more general than reverse data management.

— Makhija, Gatterbauer. Minimally Factorizing the Provenance of Self-Join Free Conjunctive Queries, PODS 2024.
https://doi.org/10.1145/3651605

— What about consistent query answering? And even more general logic optimization problems?

« More concretely open: Unifying deletion and insertion propagation ("change
propagation"), basically positive and negative provenance / Why or Why not?

— Meliou, Gatterbauer, Moore, Suciu. Why so? or Why no? Functional causality for explaining query answers. MUD 2010.
https://arxiv.org/pdf/0912.5340

e Please also talk to Neha ©
Faculty at UMass Amherst from Fall'25

Thank you ©
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