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1 Introduction
The goal of query visualization is to transform a relational query into a visual representation that

helps a user quickly understand the intent of a query [35]. Visual representations of relational

queries have been investigated since the early days of relational databases. While the history of

visual query languages is long and rich [12, 31], the challenge of accurately representing complex

logical constructs remains. Already in 1996, Ioannidis [46] lamented that most visual database

interfaces were “ad hoc solutions” and that “there are several hard research problems regarding
complex querying and visualization that are currently open.” One such fundamental problem that

remains unsolved to this day is the question of how to accurately represent any logical disjunction

in a graphical language. Just like conjunction, disjunction is a fundamental logical operator to

combine logical statements, but it is far harder to represent graphically. We call this the disjunction
problem of visual query representations.

The problem has vexed researchers for centuries, even for basic First-Order Logic (FOL).
1
Peirce

mentions the problem already in 1896 in his influential work onVenn diagrams: “It is only disjunctions
of conjunctions that cause some inconvenience” [58, Paragraph 4.365]. Gardner in his 1958 book ‘Logic
Machines and Diagrams’ [28] discusses the challenging disjunction (𝐴∨𝐵) → (𝐵∨𝐶) and concludes
1
FOL is basically the same as Relational Calculus and thus equivalent in logical expressiveness to relationally complete

languages.
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Fig. 1. (a): A prototypical prior approach for representing disjunctions via edges. Edge-based approaches are
incomplete as they leave quantifier scopes ambiguous (as in this example) and require symbolic annotations
to encode precedence of operators (here, or before and). (b,c): Representation B has precise semantics and
can pattern-represent any well-formed TRC query. For instance, it distinguishes between two interpretations
of the ambiguous diagram in (a), an example discussed in detail in Section 8.1.

that “there seems to be no simple way in which the statement, as it stands, can be diagramed” [28,
Section 4.3]. Shin in her work on the logic of diagrams writes “any form of representation for
disjunctive information–whether a sign is introduced or not–is bound to be symbolic” [64, Ch. 3.2].
Englebretsen [26] in his review of Shin’s 1995 book [63] writes: “In her discussion of perception
she shows that disjunctive information is not representable in any system.” Thalheim states [70, 71]

that “There is no simple way to represent Boolean formulas” and gives a challenging example (that

is identical to Fig. 10a up to renaming of constants): 𝑅.𝐴 = 1 ∨ 𝑅.𝐵 = 2 ∨ (𝑅.𝐶 = 3 ∧ 𝑅.𝐷 = 4). A
recent tutorial by the author on visual query representations [31] lists several open problems and

includes Fig. 1a as challenge: (𝑅.𝐴 = 𝑆.𝐴 ∧ 𝑅.𝐵 = 0) ∨ (𝑅.𝐵 = 1 ∧ 𝑅.𝐶 = 2). A recent paper [33]

states in its conclusions that “it is not clear how to achieve an intuitive and principled diagrammatic
representation for arbitrary nestings of disjunctions, such as 𝑅.𝐴<𝑆.𝐸 ∧ (𝑅.𝐵<𝑆.𝐹 ∨ 𝑅.𝐶 <𝑆.𝐺) or
(𝑅.𝐴>0 ∧ 𝑅.𝐴<10) ∨ (𝑅.𝐴>20 ∧ 𝑅.𝐴<30)”.
Intuitively, the disjunction problem is as follows: Given any well-formed Tuple Relational

Calculus (TRC) query𝑞, construct a diagram𝜑 (𝑞) s.t. the following conditions hold: 1 Completeness:
Every well-formed TRC query must yield a corresponding valid diagram 𝜑 (𝑞). 2 Soundness:
Translating 𝜑 (𝑞) back must yield a logically equivalent query 𝜑−1 (𝜑 (𝑞)) ≡ 𝑞 (no loss, no ambiguity).

3 Pattern preservation: The diagram 𝜑 (𝑞) must reference the same set of tables as 𝑞. This point

is basically a compactness requirement: the size of the diagram should scale proportionally with

the query size, i.e., |𝜑 (𝑞) | = O(|𝑞 |). 4 Explicit representation of disjunction: Disjunctions in 𝑞

must be explicitly represented in 𝜙 (𝑞) since disjunction is a fundamental operator in relational

query languages. Additionally, an explicit disjunction symbol also enables syntactic safety to be

determined directly from the diagram as is, without requiring any mental transformations of the

diagram.

Our contribution.We give a principled solution to the disjunction problem of diagrammatic

query representations that unifies, generalizes, and overcomes the shortcomings of the 3 main prior

graphical approaches for disjunction proposed in the literature. Our solution, called Represen-
tation B, is a diagrammatic representation of well-formed Tuple Relational Calculus (TRC) that
preserves the relational pattern and the safety of a query.

2
It is heavily inspired by Relational

Diagrams [33, 34], however it generalizes Relational Diagrams: it is identical for disjunction-free

2
In this paper, safety exclusively refers to syntactic safety, one of several syntactic criteria guaranteeing that the query is

domain-independent and thus always returns finitely many answers (see Sections 2.4 and 4.2). We do not mean semantic
safety, which is domain independence itself and is undecidable (and thus cannot be fully captured by any syntactic condition).

The notion of “same relational pattern” is semantic and (slightly simplified) means that the representation uses the same

number of relation variables (see Section 2.2).
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queries, and it is more general and can be exponentially more concise. It also preserves the safety

conditions for TRC, and it is the first to achieve 100% pattern coverage on a recently proposed

textbook benchmark.

Our approach in a nutshell. We proceed in two steps: First, we introduce a rigorously defined

representation that replaces join and selection predicates with anchor relations (a relational encoding
of built-in predicates and constants) and rewrites disjunctions using De Morgan’s laws. This solves

the disjunction problem because it gives a dedicated anchor to each predicate, which can then be

placed in any level of nesting below the scopes of the table attributes it references. While complete, it

is practically unsatisfying due to its visual clutter, the lack of a dedicated disjunction symbol and the

fact that it cannot preserve direct safety conditions of TRC. Second, we then substitute the anchor

relations with prior visual formalisms (while keeping the formal semantics of anchor relations) and

add a box-based visual shortcut for disjunction that brings back the direct safety conditions. Our

representation allows disjunctions at any nesting level, while prior box-based approaches restrict

disjunctions to be at the root.

Outline. Section 2 provides the background and problem definitions. Section 3 classifies prior

approaches for representing disjunctions and discusses the challenges. Section 4 develops our

notation for Tuple Relational Calculus (TRC), its safety conditions, and the notion of pattern

expressiveness based on an Abstract Syntax Tree (AST) representation of TRC. These ASTs are
in a 1-to-1 correspondence to our later introduced diagrammatic representations. Section 5 gives

our preliminary solution to the disjunction problem with anchor relations, and Section 6 replaces

the anchor relations with De Morgan-fuse boxes, leading to Representation B. Section 7 discusses

our perceptual choices and shows how our fuse boxes unify and generalize prior approaches for

disjunction. Section 8 presents our solutions to the challenging queries from the introduction and

shows 100% pattern coverage over a database textbook benchmark. The full version [32] includes

many more details, proofs, illustrating examples, and an extensive analysis and discussion of prior

solutions for disjunctions (including screenshots from original work).

Delineation.While prior work has shown that diagrammatic representations can help users

understand relational structures faster and more reliably [33, 49, 55], we do not make any claim that

our choice of representation is easier to understand than any other representation. This paper is

not about usability, but about feasibility and expressiveness, similar to other work in our community

studying what can be done or not [11, 14, 17, 27, 50]. In that area, we do make a strong claim in this

paper. We claim to give the first pattern-preserving diagrammatic representation of TRC and thus

the first complete solution to the disjunction problem (Theorem 7). We also claim that our solution

can admit an exponentially more concise representation than prior work (Proposition 10).

2 Formal Background and Problem Statements
We discuss diagrammatic (visual) query representations, define notions of a logical diagram and

relational patterns, define our two problems (the disjunction problem and the direct safety problem),

and classify prior approaches for representing disjunctions.

2.1 Diagrammatic vs. textual representations
We use diagrammatic representation synonymously with one that is visual, graphical, or non-

symbolic (in contrast to textual or symbolic), and define logical diagrams as follows:

Definition 1 (Logical Diagram). A logical diagram is a graphical representation of a logical formula
in which the topological relationships between its elements represent logical relationships between the
elements of the formula.
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3:4 Wolfgang Gatterbauer

Topological relationships are spatial relations that remain invariant under continuous deformations,
such as connectivity, containment, and adjacency. Intuitively, in order for a representation to be

called diagrammatic, it needs to show joins (i.e. the relationships between tables) as edges between

the respective table attributes, and it cannot contain non-atomic logical sentences that require

symbolic interpretation of logical connectives, such as “𝐴=1 ∨𝐴=2”. Our definition captures the

essence of many prior definitions of diagrams, for example: “Diagram: a simplified drawing showing
the appearance, structure, or workings of something; a schematic representation” [57]. “Diagram: a
graphic design that explains rather than represents; especially: a drawing that shows arrangement and
relations (as of parts)” [53]. “The relationships established between two sets of elements constitute a
diagram” [9, p. 129]. “Logic diagram: a two-dimensional geometric figure with spatial relations that
are isomorphic with the structure of a logical statement” [28, p. 28]. “A diagram is an arrangement of
marks on a virtual page (...) that represents a set of ideas and their relations” [75].

Notice that while the relationships between elements are captured diagrammatically, the elements

themselves are represented as text. This is because relation names and attribute names do not

constitute relational information themselves. For example, the string “Sailor” is still used to represent

the name of a relation called “Sailor” (instead of an icon with domain-specific interpretation) and

similarly with an attribute named “name”. However, the fact that “name” is one of the attributes of

a relation named “Sailor” constitutes a relationship (see [31] for an illustration). This separation
of information carried by individual elements via text from relational information that can be read
off diagrammatically is a key motivation of diagrammatic representations and visualizations in

general. See for example Scott McCloud’s beautiful work on understanding comics [52] that shows

that using text to convey part of the information frees up the image to focus on other content,

and vice versa. In the case of diagrams, it is the topology that focuses on the relations between

elements rather than the individual elements themselves. See also Hearst’s recent discussion [43]

of the complex interactions when combining text with visualizations and many references therein.

2.1.1 Constitutive vs. enabling features. De Toffoli [72] distinguishes between “constitutive” and

“enabling” features of a notational system. Constitutive features have precise mathematical meaning

and are essential to interpret the notation correctly (e.g. topological relationships). Enabling features
facilitate interpretation but are not essential (e.g. colors or relative sizes). We find this distinction

helpful and use it when discussing non-essential features of our representation (especially in

Section 7.1). Similar distinctions were made many times throughout history, e.g. by Manders [51]

who contrasts “co-exact” attributes of a diagram (in essence, topological attributes) from “exact”

attributes (geometric attributes that are unstable under perturbations, like size and shape), and by

Green and Petre [40] who contrast “formal semantics” from “secondary notation” (such as color

and grouping of related statements) that “have no place in the formal semantics” yet “could make a
substantial difference in the readability.”3

2.2 Relational patterns and disjunctions
Our goal is to develop an unambiguous diagrammatic representation of logical formulas that

preserves “their structure”, even in the presence of arbitrary disjunctions. To formalize this goal,

we use the notion of a query’s relational pattern [34], which gives precise meaning to a query’s

relational structure. We define a table reference as any quantified reference to a base table within a

query expression 𝑞. For example, the SQL query “SELECT ... FROM R as R1, R as R2 WHERE ...” has

3
Although the term “constitutive” may be difficult to grasp at first, and although we considered alternative pairs such as

(formal/secondary), (core/auxiliary), or (defining/supporting), we decided in the end to follow De Toffoli’s terminology

rather than introduce new terms, in order to avoid further proliferation of concepts [81]
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two table references “R” to the same base table R.
4
The (table) signature S of a query 𝑞 is the ordered

sequence of all its table references (in the order they appear syntactically within the query).
5
To

construct the dissociated query 𝑞′, we treat each table reference in S as referring to a distinct base

table (i.e., a fresh input relation), resulting in a new dissociated signature S′. For the SQL example

above, the dissociated query becomes: “SELECT ... FROM R1 as R1, R2 as R2 WHERE...” We then

define the relational pattern of 𝑞 as the function computed by 𝑞′ from its dissociated signature S′
(a tuple of table references) to an output relation.

Definition 2 (Relational pattern [34]). Given a query 𝑞 with table signature S. The relational
pattern of 𝑞 is the function defined by its dissociated query 𝑞′ (S′).

Intuitively, the dissociated query defines a logical function from a tuple of relation values (one

per table reference in 𝑞) to an output relation. The ordering of these inputs matters, just as the

signature of a function determines the order of its arguments. For our SQL example above, the

dissociated query describes a function mapping any database instance with two tables R1 and R2

to an output table. Notice that by abstracting away from language-specific syntax and focusing

instead on table references (relations being the one language element common to all relational

query languages), the dissociated query provides a semantic, language-independent characterization
of a query’s internal structure, hereafter referred to as its relational pattern. This abstraction makes

it possible to compare the pattern expressiveness of different languages. Two queries 𝑞1 and 𝑞2 are

said to have the same relational pattern (they are pattern-isomorphic) if their dissociated queries

are logically equivalent up to renaming and reordering of schema elements and constants (see [34,

Def. 10]). If 𝑞1 and 𝑞2 are logically equivalent and have the same relational pattern, we say that 𝑞2
is a pattern-preserving representation of 𝑞1 (and vice versa), or that 𝑞2 pattern-represents 𝑞1.

Prior work on relational patterns [33] proves that there exist syntactically safe queries in relational

calculus (RC) that have logically equivalent queries in relational algebra (RA), yet have no pattern-

preserving equivalent in RA. Concretely, the paper presents a safe TRC query with 3 table references

and shows that every logically equivalent RA query must have at least 4 table references, thereby

having a different relational pattern (the 3 table references in TRC have no bijection to the 4

table references in RA). This implies that neither RA nor its associated evaluation trees can fully

capture the set of relational patterns expressible in RC. Note that this result (that RC supports more

relational patterns than RA) even applies for syntactically safe queries, and is therefore distinct

from the classical observation that unsafe RC queries are not expressible in RA at all [1].

2.3 Problem 1: The disjunction problem
These notions allow us to reformulate conditions 1 - 3 from our intuitive problem formulation

stated in Section 1 as follows:

4
Notice that the following 4 terms denote distinct concepts: relation variable, relation value, range variable, and table

reference. Date and Darwen [20, 21] introduced the schema-level term relation variable (or relvar) to denote the identifier of

a base table, distinguishing it from the relation value, which represents the current state of the relvar (i.e., its set of tuples).

In contrast, range variables are query-specific. For example, in the SQL fragment “FROM R as R1, R as R2”, the aliases R1

and R2 are range variables that both iterate over the same relation 𝑅. Similarly, in the TRC expression “∃𝑟1 ∈𝑅, ∃𝑟2 ∈𝑅”,
the tuple variables 𝑟1 and 𝑟2 range over the same relation 𝑅. In both examples, the two range variables refer to the same

base relation 𝑅. However, because they are bound separately within the same query, they represent distinct table references
(a distinction that becomes essential when reasoning about relational patterns).

5
Replacing the term “table signature” with “relational signature” seems natural. However, for consistency, this would also

require renaming “table reference” to “relational reference” and “base table” to “base relation”. However, “base table” is an

established term that we did not want to change.
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3:6 Wolfgang Gatterbauer

Definition 3 (Disjunction problem). The disjunction problem of diagrammatic query representations
is to find a pattern-isomorphic diagrammatic representation for any valid First-Order Logic (FOL)
formula, with precise and unambiguous bidirectional translations.

2.4 Problem 2: Preserving direct safety
Our solution to the first problem has no dedicated symbol for disjunctions and expresses them

indirectly with De Morgan’s law. Although not strictly necessary, there is a reason why we have

the disjunction operator: replacing it with double-negations in logic and language can complicate

understanding. Citing from [8] on disjunctions: “...the fewer connectives we have, the harder it is to
understand our sentences.” For diagrams too, having an explicit symbol for disjunction could avoid

otherwise nested negations as in Fig. 5a.

Another case for having an explicit disjunction symbol is that safety restrictions are defined via

syntactic criteria. Ullman’s safety criteria [76, Section 3.8] are not invariant under equivalence and
are applied directly to the formula as written. They do not require any transformation and are thus

also referred to as syntactic safety [37]. As minimum example, the query {𝑞(𝐴) | ¬(¬(∃𝑟 ∈𝑅 [𝑞.𝐴 =

𝑟 .𝐴]))} is not Ullman-safe, but its logically equivalent formula {𝑞(𝐴) | ∃𝑟 ∈𝑅 [𝑞.𝐴 = 𝑟 .𝐴]} is. As a
consequence, rewriting a formula using De Morgan’s laws can turn a safe query into an unsafe one.

We give here a simplified example by Ullman [76, Example 3.29]:

Example 1 (Union of queries). Consider two unary tables 𝑅(𝐴) and 𝑆 (𝐴) and the TRC query:

{𝑞(𝐴) | ∃𝑟 ∈𝑅 [𝑞.𝐴=𝑟 .𝐴] ∨ ∃𝑠 ∈𝑆 [𝑞.𝐴=𝑠 .𝐴]} (1)

This query is Ullman-safe [76]. We can remove the disjunction by using De Morgan. However,

the resulting query is now not Ullman-safe due to the outer negation (¬) operator [76]:
{𝑞(𝐴) | ¬(¬(∃𝑟 ∈𝑅 [𝑞.𝐴=𝑟 .𝐴]) ∧ ¬(∃𝑠 ∈𝑆 [𝑞.𝐴=𝑠 .𝐴]))} (2)

Several alternative notions of safety have been proposed that apply increasingly powerful sets

of syntactic rewrite-rules before determining safety (the full version [32] gives an overview). We

call “direct safety” a syntactic criterion that determines safety directly from the formula as written,

without any rewrite (or mental transformation), similar to Ullman’s. This requires an explicit visual

device for disjunction. Condition 4 from Section 1 can thus be reformulated as:

Definition 4 (Direct safety). A diagrammatic query representation has direct safety if it allows
deciding a formula’s safety directly from the diagram without any prior transformation.

Notice that syntactic safety is different from semantic safety of queries. Semantic safety of a

query (the finiteness of its output on every database) is undecidable and can thus not be inferred

using syntactic criteria (see [6, Chapter 8]).

3 Prior work and approaches for disjunctions
3.1 Existing Visual query representations and diagrammatic reasoning systems
Visual query languages for writing queries have been investigated since the early days of databases

and a 1997 survey [12] has already over 150 references, with examples such as Query-By-Example

(QBE) [82] and Query By Diagram (QBD) [4, 13]. Today, many commercial and open-source data-

base systems have rudimentary graphical SQL editors, such as SQL Server Management Studio

(SSMS) [68], Active Query Builder [3], QueryScope from SQLdep [60], MS Access [54], and Post-

greSQL’s pgAdmin3 [59]. Also, new direct manipulation visual interfaces are being developed, such

as DataPlay [2] and SIEUFERD [7]. More recently, visual query representations have been proposed

for the inverse functionality of understanding queries, with notable examples VisualSQL [47],
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Fig. 2. Section 3.2: This summary shows 5 conceptual approaches for representing disjunctions applied to the
deceptively simple problem of representing 𝑅.𝐴=1 ∨ 𝑅.𝐴=2: text-based (a), form-based (b), edge-based (c-e),
box-based (f-h), and De Morgan-based (i,j).

QueryVis [19, 49], and SQLVis [55]. Some predict a future user interaction where users speak to

voice assistants, and those then “visualize back” what they understood [35].

Seemingly disconnected from these developments, the diagrammatic reasoning community [22,

39, 44] studies diagrammatic representations that have sound and complete inference rules. Most

noteworthy is Shin’s influential work [63] that proves that a slight modification of Venn-Peirce

diagrams constitutes a sound and complete diagrammatic reasoning system for monadic FOL. Many

variants of diagrammatic reasoning systems have since been proposed at the annual Diagrams

conference [48]. However, neither of these proposals can represent general polyadic predicates (the

maximum are dyadic relations [69, Table 1], many of them are either not sound or not complete

[69, Table 2], and neither of them allow pattern-isomorphic representations, even for the fragments

of logic they cover (most often, they can’t handle arbitrary disjunctions).

Recent VLDB and ICDE tutorials [30, 31] surveyed diagrammatic representations within and

outside the database community and listed diagrammatic representations of disjunction as open

problem.

3.1.1 Relational Diagrams. Relational Diagrams [33] are a relationally complete and unambiguous

representation of safe TRC. They use UML notation for tables and their attributes and represent

negation scopes with hierarchically nested dashed rounded rectangles that partition the canvas

into zones (compartments). Join predicates are shown with directed arrows and optional labels on

the edges (an important detail for us later). However, this representation (like all prior diagram-

matic representations) cannot accurately represent relational patterns involving disjunctions. To

represent disjunctions, Relational Diagrams first require a transformation that duplicates binding
atoms (i.e. add new table references), which changes the relational pattern (Example 3 illustrates

this transformation). The intuitive reason is that a negation like ¬(𝑅.𝐴 = 𝑆.𝐴 ∧ . . .) does not apply
to either of the tables 𝑅 nor 𝑆 , but the equality predicate as a whole. This predicate is represented

by a line, which cannot be easily confined to a negation scope.

We were inspired by that work, yet develop a diagrammatic representation called

Representation B that can represent all relational patterns of TRC (i.e. it is pattern-complete for
TRC) and is backward compatible with Relational Diagrams (every Relational Diagram has an

identical representation as Representation B, but not vice versa). Interestingly, we achieve this
generalization by mostly redefining existing visual notations and giving them a stricter semantic
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3:8 Wolfgang Gatterbauer

interpretation. Our representation does not only preserve the table signature (the relation variables),

but also the join and selection predicates, and thus all atoms from a given TRC query.

3.2 Prior incomplete approaches for disjunction
We summarize here 5 conceptual approaches for representing disjunctions that we found throughout

the literature. We illustrate with query ∃𝑟 ∈𝑅 [𝑟 .𝐴=1 ∨ 𝑟 .𝐴=2] and use a standardized and often

simplified notation that focuses on the key visual elements. For the interested reader, full version [32]

contains the original figures that led us to this classification.

3.2.1 Text-based disjunctions. Logical formulas can be kept as text (Fig. 2a). This approach is

not diagrammatic, and we list it only for completeness. Example uses are the condition boxes by

QBE [82] and handling of simple disjunctions by DataPlay [2].

3.2.2 (Vertical) form-based disjunctions. QBE [82] allows filling out two separate rows with alter-

native information (Fig. 2b). Recent visual query representations such as SQLVis [55] adopt this

approach for simple disjunctions, such as our running example. However, this formalism does not

allow disjunctions between join predicates and selection predicates (e.g., ∃𝑟 ∈ 𝑅 [𝑟 .𝐴 = 1 ∨ ∃𝑠 ∈
𝑆 [𝑟 .𝐴=𝑠 .𝐴]]) or nested disjunctions. Datalog [15] expresses disjunctions with repeated rules and

each rule has a new relation variable. Thus, it does not preserve the pattern: 𝑄 :−𝑅(1).𝑄 :−𝑅(2).

3.2.3 Edge-based disjunctions. Around 1896, Charles Sanders Peirce [58] extended Venn dia-

grams [77] with edges connecting "O" and "X" markers to express disjunctions. An "O" means

the partition is empty (false). An "X" means there is at least one member (true). An edge between

two markers means that at least one of these statements is true (Fig. 2c). Connecting disjunctive

predicates via edges of various forms was suggested repeatedly, e.g. by VQL [56], VisualSQL [47]

(Fig. 2d), and QueryViz [19] (Fig. 2e). Edges were mostly proposed for disjunctive filters within

the same table and cannot represent more complicated formulas, such as (19) and (20) discussed in

Section 8.1.

3.2.4 Box-based disjunctions. Peirce proposed another solution to disjunctions [58]: He put unitary

Venn diagrams into rectangular boxes and interpreted adjacent boxes as alternatives, i.e. disjuncts.

Shin [63] adds back lines between boxes (Fig. 2f).
6
Spider diagrams [45] remove the lines between

boxes and place them in a larger “box template” with explicit ∨ labels (Fig. 2g). Relational Di-

agrams [33] represent a union of queries via adjacent “union cells” (Fig. 2h). All of these prior

box-based approaches represent disjunctions as unions of well-formed diagrams. Ours is the first to

allow and give a well-defined semantics to disjunctions of logical expressions deeply nested within
diagrams.

3.2.5 De Morgan-based disjunctions. We use the term for representations that use only symbols for

negation and conjunction, and apply negation in a nested way in accordance with the logical identity

𝐴 ∨ 𝐵 ≡ ¬(¬𝐴 ∧ ¬𝐵). Peirce’s beta existential graphs [58] use closed curves to express negation

and juxtaposition for conjunctions (Fig. 2i). String diagrams [10, 42] are a variant that represent

bound variables by a dot at the end of lines (Fig. 2j). These prior De Morgan-based approaches

cannot represent arbitrarily nested logical conditions, such as the ones from the introduction, since

predicates (often expressed by lines) lacked stable anchor points for negation. Our anchor relations

solve this problem by providing stable references for negation scopes (see Fig. 5a).

6
We slightly simplified here Shin’s proposal. The conclusion is the same, and our appendix gives the full details.
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4 Tuple Relational Calculus (TRC)
We give a succinct and necessary background on TRC. The full version [32] discusses different

formalisms for TRC, different notions of safety, and includes a proof of the correctness of our safety
definition.

4.1 Well-formed Tuple Relational Calculus (TRC)
Our key claim is that our representation has a direct and, hence, pattern-preserving mapping from

any safe TRC query. To prove that, we are extra careful in defining our notions. Our formalism is

heavily inspired by the sections on relational calculus of several textbooks [1, 24, 61, 62, 65, 76], yet

it is geared towards an explicit mapping to a visualization. Example 2 gives an end-to-end example.

TRC formulas. Given a relational vocabulary R = {𝑅1, 𝑅2, . . .}, a (well-formed) TRC formula can
contain 3 types of atoms:
(1) Binding atoms of the form 𝑟 ∈ 𝑅, where 𝑟 is a range variable (i.e., a variable ranging over

tuples of relation 𝑅).7

(2) Join predicates of the form 𝑟 .𝐴 𝜃 𝑠.𝐵, where 𝑟 and 𝑠 are range variables, 𝐴 and 𝐵 are attributes

of 𝑟 and 𝑠 , respectively, and 𝜃 ∈ {<,≤,=,≠, >,≥} is a comparison operator. The expressions

𝑟 .𝐴 and 𝑠 .𝐵 are the left and right operands of the comparison.

(3) Selection predicates of the form 𝑟 .𝐴 𝜃 𝑐 , where 𝑟 , 𝐴, and 𝜃 are as before, and 𝑐 is a constant.

Here, 𝑟 .𝐴 is the attribute operand and 𝑐 is the constant operand.

A range variable 𝑟 (also called a tuple variable) is said to be free unless it is bound by a quanti-

fier/binding block of the form ∃𝑟 ∈𝑅 or ∀𝑟 ∈𝑅. TRC formulas are built inductively from atoms using

the following 3 families of formation rules:

(1) Atoms: An atom is a formula.

(2) Logical connectives: If 𝜑1, 𝜑2, . . . , 𝜑𝑘 are formulas, then so are ¬(𝜑1), (𝜑1 → 𝜑2), (𝜑1 ∨ 𝜑2 ∨
· · · ∨ 𝜑𝑘 ), and (𝜑1 ∧ 𝜑2 ∧ · · · ∧ 𝜑𝑘 ).

(3) Quantifier/binding blocks: If 𝜑 is a formula and 𝑅1, . . . , 𝑅𝑘 are relations from R, then ∃𝑟1 ∈
𝑅1, . . . , 𝑟𝑘 ∈𝑅𝑘 [𝜑] and ∀𝑟1 ∈𝑅1, . . . , 𝑟𝑘 ∈𝑅𝑘 [𝜑] are also formulas.

8
This means that all bindings

of range variables (e.g., 𝑟 ∈𝑅) are introduced by an explicit quantifier, and those range variables
are available within the scope defined by the brackets: ∃𝑟 ∈𝑅, 𝑠 ∈𝑆 [⟨scope of 𝑟 and 𝑠⟩].9

We assume the usual operator precedence (¬) > (∧) > (∨) > (→) and can omit parentheses if

this causes no ambiguity about the semantics of the formula. Quantifier scopes are always explicit

using brackets [. . .], so precedence does not apply to quantifiers. Notice that our convention is

different from the common informal convention in FOL, where a quantifier is often understood to

extend as far right as possible unless parentheses intervene. For example, applying our convention

to Domain Relational Calculus, we would write ∃𝑥 [𝜙] ∧𝜓 instead of (∃𝑥 .𝜙) ∧𝜓 , and ∃𝑥 [𝜙 ∧𝜓 ]
instead of the ambiguous notation ∃𝑥 .𝜙 ∧𝜓 . WLOG, no range variable can be bound more than

once, and no variable occurs both free and bound in a subformula.

TRC queries. A (well-formed) Boolean query (or sentence) is a TRC formula without free

variables. A (well-formed) non-Boolean query is an expression {𝑞(H) | 𝜑} where 𝑞 is the only

7
While we use “binding atom” exclusively for atomic expressions of the form 𝑟 ∈𝑅, they are always introduced by quantifiers

and together form a quantifier/binding block. The reason is that we treat 𝑟 ∈𝑅 not as a guard or Boolean membership atom

(sometimes written as 𝑅 (𝑟 ) [24]), but rather the entire quantifier/binding block ∃𝑟 ∈𝑅 similar in spirit to a generator 𝑟 ← 𝑅

in a list comprehension framework that binds the range variable 𝑟 to each row in 𝑅 (see [36] for details).

8
Notice that in our notation, two binding atoms can share the same quantifier. Thus, we write ∃𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 [𝜑 ] instead

of ∃𝑟 ∈ 𝑅, ∃𝑠 ∈ 𝑆 [𝜑 ]. If quantifiers alternate, we write ∃𝑟 ∈ 𝑅 [∀𝑠 ∈ 𝑆 [𝜑 ] ], instead of ∃𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆 [𝜑 ]. We also allow

∃𝑟 ∈𝑅 [∃𝑠 ∈𝑆 [𝜑 ] ], but prefer to write the logically equivalent maximally scoped ∃𝑟 ∈𝑅, 𝑠 ∈𝑆 [𝜑 ].
9
We also allow a body-less quantifier/binding if a range variable is never used: ∃𝑟1 ∈𝑅1, . . . , 𝑟𝑘 ∈𝑅𝑘 and ∀𝑟1 ∈𝑅1, . . . , 𝑟𝑘 ∈

𝑅𝑘 . For example, ∃𝑟 ∈𝑅 is a valid sentence that is true if 𝑅 is not empty.
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3:10 Wolfgang Gatterbauer

free tuple variable of 𝜑 , and the header H = (𝐴1, . . . , 𝐴𝑘 ) is a list of attributes (or components) of

𝑞 specifying the output schema. The set builder notation defines the answer as the set of tuples

(𝑞.𝐴1, . . . , 𝑞.𝐴𝑘 ) that satisfy 𝜑 .
Abstract Syntax Tree (AST). The Abstract Syntax Tree (AST) of a TRC query is a tree-based

representation that encodes a unique logical decomposition into subexpressions. It abstracts away

certain syntactic details from the parse tree and gives a unique reversal of the inductively applied

formation rules. The leaves (inputs) are formed by atoms. Inner nodes belong to 3 families:

(1) The root for non-Boolean queries {𝑞(H) | 𝜑} is formed by a query node. Its two children are

output for the output relation 𝑞(H) and formula for 𝜑 . The root of Boolean queries is formed

by a formula node.
(2) ∃𝑟1 ∈ 𝑅1, . . . , 𝑟𝑘 ∈ 𝑅𝑘 [𝜑] and ∀𝑟1 ∈ 𝑅1, . . . , 𝑟𝑘 ∈ 𝑅𝑘 [𝜑] are represented by ∃ and ∀ quantifier

nodes, respectively. Their two types of children are one or more binding atoms and zero or

one formula 𝜑 .
(3) Logical connectives are nodes that have either one child (¬), two children (→), or 𝑘≥2 children

(∧,∨), and that form the root of a formula.

We require that no ¬ is the child of another ¬ node (we can always cancel double negations by

¬¬𝜑 ≡ 𝜑) and that the polyadic connectives (∧,∨) are “flattened” [1, Sect. 5.4], i.e. they can have

more than 2 children, yet no child of an ∧ is another ∧ (analogously for ∨). Similarly, quantifier

nodes (∃,∀) can’t have a quantifier node of the same type as a grandchild, i.e. a ∃ quantifier node
can’t have another ∃ quantifier node as child of its formula child.

Maximally scoped TRC.We call a TRC formula maximally scoped if no ∃ quantifier node is
the child of an ∧ node. This is WLOG, as existential quantifiers can always be pushed before an ∧
node, as in: ∃𝑟 ∈𝑅 [𝜑1] ∧ ∃𝑠 ∈𝑆 [𝜑2] ≡ ∃𝑟 ∈𝑅, 𝑠 ∈𝑆 [𝜑1 ∧ 𝜑2].

Safety of Boolean queries.While Boolean queries in Domain Relational Calculus can be unsafe,

e.g. ∃𝑥 [¬(𝑅(𝑥))], in our definition of well-formed TRC, all relation variables (other than the output)

are bound to a base table. It follows that well-formed Boolean TRC queries are always safe, and

hence, domain-independent.

Proposition 5 (Boolean TRC safety). Every well-formed Boolean TRC according to Section 4.1 is
domain-independent.

4.2 Explicit safety of TRC
Recall that (syntactic) safety syntactically restricts the well-formed TRC queries s.t. safe queries

are guaranteed to be domain-independent (and thus have only finitely many answers), and this

subset can express all possible finite queries [73]; direct safety (Definition 4) requires that such

safety can be recognized directly from the representation without transformation. We will next

define a syntactic safety condition called “explicit safety” that fulfills the direct safety conditions.

We call the base partition of an AST the maximal subtree reachable from the root without crossing

a negation (¬), implication (→), or universal quantifier (∀). We call base disjunction any disjunction

that appears in the base partition. We say that a non-Boolean TRC query {𝑞(H) | 𝜑} is explicitly
safe if it is well-formed and the following 4 conditions hold on 𝜑 :

(1) Every attribute𝐴 of the headerH is assigned in 𝜑 to either (𝑖) an attribute 𝐵 of an existentially

quantified table ∃𝑟 ∈𝑅 via an equijoin predicate𝑞.𝐴=𝑟 .𝐵, or (𝑖𝑖) a constant 𝑐 via an equiselection
predicate 𝑞.𝐴=𝑐 . In both cases, we call this equality predicate an assignment predicate for 𝑞.𝐴.

(2) Every assignment predicate is in the base partition of the AST.

(3) Under base disjunctions: If an assignment predicate for 𝑞.𝐴 occurs under a base disjunction

∨ in the AST, then all child subformulas of that ∨ node have exactly one free tuple variable,

and it is the same variable with the same attributes.
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QUERY
├─ OUTPUT: q(A,B)
└─ OR

├─ AND
│  ├─ PREDICATE: q.A = 0
│  └─ OR
│     ├─ QUANTIFIER ∃ 
│     │  ├─ BINDING: r ∈ R
│     │  └─ PREDICATE: q.B = r.B
│     └─ PREDICATE: q.B = 1
└─ QUANTIFIER ∃

├─ BINDING: r2 ∈ R
└─ AND

├─ PREDICATE: q.A = r2.A
├─ PREDICATE: q.B = r2.B
└─ QUANTIFIER ∀

├─ BINDING: s ∈ S
└─ QUANTIFIER ∃

├─ BINDING: r3 ∈ R
└─ AND

├─ PREDICATE: r2.A = r3.A
└─ PREDICATE: r3.B = s.B

Fig. 3. Example 2: AST for TRC query with nested disjunctions.

(4) Outside base disjunctions: If an assignment predicate for 𝑞.𝐴 is not under any base disjunction

in the AST, then it is the unique predicate involving 𝑞.𝐴.

Conditions (1) and (2) ensure that every output attribute is explicitly defined by an assignment

predicate in the base partition. Conditions (3) and (4) regulate how these definitions interact with

disjunctions: under a base disjunction, each branch must define the same output schema indepen-

dently; outside disjunctions, each output attribute has a single assignment predicate. Together,

these 4 conditions for explicitly safe TRC queries ensure that, once a single branch is chosen at

each base disjunction, every output attribute is assigned to exactly one table column (or constant)

in the base partition of the AST. Equivalently: each base disjunction induces a choice of one branch;

after fixing all such choices, each 𝑞.𝐴 has exactly one assignment in the base partition. Figure 3

illustrates that with the purposefully involved Example 2.

Notice that condition (4) of our explicit safety definition enforces a convenient normal form

which simplifies both reading and diagrammatic interpretation and is without loss of generality.

Any otherwise well-formed TRC query can be transformed into this normal form without changing

its relational pattern: whenever an output attribute appears in multiple predicates, all but one that

fulfills condition (1) can be replaced by equivalent join predicates between the corresponding range

variables. The resulting query is logically equivalent, pattern-preserving, and explicitly safe (see

the full version [32] for a more detailed discussion).

Also notice that maximally scoping a TRC expression by pushing existential quantifiers before

all ∧ nodes does not affect the base partition of the AST, and thus neither explicit safety.

Example 2. Consider the following safe non-Boolean TRC query:

{𝑞(𝐴, 𝐵) | (𝑞.𝐴=0 ∧ (∃𝑟 ∈𝑅 [𝑞.𝐵=𝑟 .𝐵] ∨𝑞.𝐵=1))
∨ (∃𝑟2 ∈𝑅 [𝑞.𝐴=𝑟2.𝐴 ∧ 𝑞.𝐵=𝑟2.𝐵
∧ ∀𝑠 ∈𝑆 [∃𝑟3 ∈𝑅 [𝑟2.𝐴=𝑟3.𝐴 ∧ 𝑟3.𝐵=𝑠 .𝐵]]])}

Figure 3 shows its AST. Notice how the 4 safety conditions are fulfilled. In particular, both child

subformulas “∃𝑟 ∈𝑅 [𝑞.𝐵=𝑟 .𝐵]” and “𝑞.𝐵=1” of the lower nested disjunction have 𝑞(𝐵) as free
tuple variable. However, both child subformulas of the earlier disjunction in the tree have 𝑞(𝐴, 𝐵)
as free tuple variable.
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5 A preliminary solution with anchor relations
This section develops an extension to Relational Diagrams that solves the disjunction problem and

gives the resulting representation the same pattern expressiveness as TRC. The approach relies on

anchor relations (i.e. unary and binary relations that represent constants and built-in predicates).

The approach is simple in that it does not require any novel visual syntactic devices (it uses even a

smaller visual vocabulary than Relational Diagrams). However, it is practically unsatisfying due to

its additional visual clutter, and the fact that it cannot preserve the explicit safety conditions of TRC.
We address these problems in the subsequent section.

Here, we first discuss two important fragments of TRC (Section 5.1), then discuss our idea of

anchor relations (Section 5.2), before we prove it to be pattern-isomorphic to TRC (Section 5.3).

5.1 TRC¬∃∧ is an atom-preserving fragment of TRC, but not of safe TRC
We first show that universal quantifiers ∀, material implications→, and disjunctions can be replaced

in TRC by using only the symbols for negation ¬(...), existential quantification ∃, and conjunction

∧ without changing the relational pattern.10. While it is standard textbook knowledge that the

connectives ¬,∧ are truth-functionally complete [8, Sections 7.4], we show the slightly more

general statement that we can preserve all atoms in the AST.

Lemma 6. Given a TRC formula 𝜑 with universal quantification, implication, or disjunction. Then
there exists a logically equivalent TRC formula 𝜑 ′ that (𝑖) is pattern-isomorphic to 𝜑 , (𝑖𝑖) does not use
universal quantifiers, implications, or disjunction, (𝑖𝑖𝑖) uses the identical set of atoms, and (𝑖𝑣) can be
found in polynomial time in the size of 𝜑 .

We call “Existential-Negation-Conjunctive TRC” (TRC¬∃∧) the fragment of TRC that only uses

the connectives {¬, ∃,∧}.11 We call “Existential-Negation TRC” (TRC¬∃∧∨) the variant of that

fragment that additionally allows disjunction ∨.

5.1.1 Comparison with the non-disjunctive fragment. The non-disjunctive fragment of Relational
Diagrams includes an extra condition requiring all predicates to be “guarded” (each predicate needs

to contain a “local attribute” whose relation is quantified within the scope of the last negation).

This condition leads to a reduction in logical expressiveness, which the authors fixed by adding a

union operator as a new visual element. It also leads to cases where expressing a query requires

a different table signature. This is in contrast to TRC¬∃∧∨ and TRC¬∃∧ which are only syntactic

restrictions of non-leaf nodes of the AST.

Example 3. Consider the following TRC query that is a variation on relational division. It returns

values from 𝑅.𝐴 that co-occur in 𝑅 with either 𝑆.𝐵 or 𝑆.𝐶 , for all tuples from 𝑆 with 𝑆.𝐴>0:

{𝑞(𝐴) | ∃𝑟 ∈𝑅 [𝑞.𝐴=𝑟 .𝐴 ∧ (∀𝑠 ∈𝑆 [𝑠 .𝐴>0 → (3)

(∃𝑟2 ∈𝑅 [(𝑟2 .𝐵=𝑠 .𝐵 ∨ 𝑟2 .𝐶=𝑠 .𝐶) ∧ 𝑟2.𝐴=𝑟 .𝐴])])]}

10
The lemma follows from a straightforward application of the standard transformations, yet may not be immediately

obvious. Take as an example the single connective NOR (↓) which is also truth-functionally complete [8, Sections 7.4], yet

replacing connectives (NOT, AND, OR) with NOR would not be pattern-preserving: ¬(𝜑 ) ≡ 𝜑 ↓ 𝜑 . As example, consider the

query {𝑞 (𝐴) | ∃𝑟 ∈𝑅 [𝑞.𝐴 = 𝑟 .𝐴 ∧¬(∃𝑠 ∈𝑆 [𝑟 .𝐵 = 𝑠.𝐵 ] ) ] }. Replacing ¬ with ↓ would lead to a different relational pattern
{𝑞 (𝐴) | ∃𝑟 ∈𝑅 [𝑞.𝐴 = 𝑟 .𝐴 ∧ (∃𝑠 ∈𝑆 [𝑟 .𝐵 = 𝑠.𝐵 ] ↓ ∃𝑠 ∈𝑆 [𝑟 .𝐵 = 𝑠.𝐵 ] ) ] }
11
We have consulted a long list of standard textbooks on logic [8, 25, 38], online resources, and LLMs, yet have not found a

standardized, shorter, non-ambiguous terminology for this rather natural fragment, despite being often implicitly used.
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Fig. 4. Sections 5.2.1 and 5.2.2: (a) Unary (blue) and (b) binary (orange) anchor relations are added to the
visual vocabulary of Relational Diagrams in order to make the resulting diagrammatic representation system
pattern-complete for TRC. Example 4 (c), (d): the placement of operator labels does not matter for Relational
Diagrams (upper diagrams). However, it matters when replacing the labels with new relations (lower diagrams).

Replacing ∀ and→ leads to an expression in TRC¬∃∧∨:

{𝑞(𝐴) | ∃𝑟 ∈𝑅 [𝑞.𝐴=𝑟 .𝐴 ∧ ¬(∃𝑠 ∈𝑆 [𝑠 .𝐴>0 ∧ (4)

¬(∃𝑟2 ∈𝑅 [(𝑟2 .𝐵=𝑠 .𝐵 ∨ 𝑟2.𝐶=𝑠 .𝐶) ∧ 𝑟2 .𝐴=𝑟 .𝐴])])]}

Further replacing ∨ leads to a query in TRC¬∃∧:

{𝑞(𝐴) | ∃𝑟 ∈𝑅 [𝑞.𝐴=𝑟 .𝐴 ∧ ¬(∃𝑠 ∈𝑆 [𝑠 .𝐴>0 ∧ (5)

¬(∃𝑟2 ∈𝑅 [¬(¬(𝑟2.𝐵=𝑠 .𝐵) ∧ ¬(𝑟2.𝐶=𝑠 .𝐶)) ∧ 𝑟2.𝐴=𝑟 .𝐴])])]}
Notice that the above three expressions are not only pattern-isomorphic (we do not change

the signature), but also all the selection predicates (e.g. “𝑆.𝐴 > 0”) and the join predicates (e.g.

“𝑟2 .𝐶=𝑠 .𝐶”) are identical. Only the logical connectives (¬,∨,∧,→), quantifiers and parentheses

have changed. In other words, all atoms are identical, and hence all leaves in their ASTs are

identical as well.

This is in contrast to the non-disjunctive fragment required by Relational Diagrams. Concretely,

[33] suggests to use De Morgan with quantifiers to distribute the quantifier over the disjuncts and

transforming into a conjunction: ¬(∃𝑟∈𝑅 [𝐴 ∨ 𝐵])=¬(∃𝑟∈𝑅 [𝐴] ∨ ∃𝑟∈𝑅 [𝐵])=¬∃𝑟∈𝑅 [𝐴] ∧ ¬∃𝑟∈
𝑅 [𝐵]. This leads to a disjunction-free query, yet also a different signature (3 occurrences of table

𝑅) and thus a different relational pattern (also shown in Fig. 5b):

{𝑞(𝐴) | ∃𝑟 ∈𝑅 [𝑞.𝐴=𝑟 .𝐴 ∧ ¬(∃𝑠 ∈𝑆 [𝑠 .𝐴>0 ∧ (6)

¬(∃𝑟2 ∈𝑅 [𝑟2 .𝐵=𝑠 .𝐵 ∧ 𝑟2.𝐴=𝑟 .𝐴]) ∧
¬(∃𝑟3 ∈𝑅 [𝑟3 .𝐶=𝑠 .𝐶 ∧ 𝑟3 .𝐴=𝑟 .𝐴])])]}

5.1.2 Safety is preserved by TRC¬∃∧∨, but not by TRC¬∃∧. Recall that explicit safety is a syntactic

criterion, and applying De Morgan can render a safe query unsafe and vice versa (recall Example 1).

Thus removing disjunction from the vocabulary makes it impossible to represent all logical queries

while preserving explicit safety. It is easy to see that the safe query from Example 1 cannot be

expressed in TRC¬∃∧ while preserving safety: The output needs to be restricted to the union

of 𝑅(𝐴) and 𝑆 (𝐴). In the absence of disjunction ∨ that can only be achieved with De Morgan,

which renders the base partition empty, and the resulting query unsafe. In contrast, TRC¬∃∧∨

preserves explicit safety since all transformations for removing ∀ and→ from a safe TRC query

must happen outside the base partition of its AST, and thus no assignment predicate changes during

the transformation.
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5.2 Anchor relations reduce the visual vocabulary but extend the pattern
expressiveness of Relational Diagrams

We next add unary and binary anchor relations to the vocabulary of Relational Diagrams and

show that this addition enables the resulting visual representation to represent all patterns of TRC.
Anchor relations are (possibly infinite) relations encoding built-in predicates (externally defined

relations [36]). For example, the anchor relation for < is the (infinite) set of all pairs (𝑥,𝑦) such
that 𝑥 < 𝑦.” These anchor relations can serve as stable anchors for negation scopes and thus

permit a direct translation from TRC¬∃∧∨ to such extended Relational Diagrams.
12
Furthermore,

by expressing predicates as relations, we do not have to introduce any new visual elements. However,
we lose the ability to encode safety and it becomes visually more complex. We address both issues

later.

5.2.1 Constants represented as unary anchor relations. For each constant 𝑐 and each arithmetic

comparison operator 𝜃 ∈ {=, <,≤, >,≥,≠}, we allow a new unary relation 𝜃𝑐 descriptively named

“𝜃𝑐” that contains the (possibly infinite) subset of the domain that fulfills that condition. Each

selection predicate “𝑅.𝐴𝜃 𝑐” is then represented as equijoins with a different occurrence of that

relation.
13
WLOG, we adopt Ullman’s notation [76] for the ordered, unnamed perspective and name

the column $1 (for first attribute). Figure 4a shows the representation for the selection predicate

“𝑅.𝐴 < 4”. Notice that our color choice of a blue background for unary anchor relations is not

“constitutive” but “enabling” (Section 2.1.1).

5.2.2 Join predicates represented as binary anchor relations. For each arithmetic comparison opera-

tor 𝜃 ∈ {=, <,≤, >,≥,≠}, we allow a new binary relation 𝜃 descriptively named “𝜃” that contains the

subset of the (possibly infinite) cross-product of the domain that fulfills that arithmetic comparison.

Each join predicate “𝑅.𝐴𝜃 𝑆.𝐵” is then represented as two equijoins of R and S with an instance of

such a relation. We again adopt Ullman’s notation and name the columns $1 and $2 (for first and

second, respectively). Figure 4b shows the representation for the join predicate “𝑅.𝐴<𝑆.𝐵”. Notice

that our choice of orange background color for binary anchor relations is again only “enabling”.

5.2.3 Correct placement of anchor relations. The placement of edge labels representing built-in

predicates in Relational Diagrams [33] is not important since the correct interpretation is guaranteed

by the “guard” of each predicate (i.e. the innermost nested relations). This freedom of placement

disappears for our anchor relations, as we illustrate next.

Example 4. According to [33], the two upper Relational Diagrams in Figs. 4c and 4d have the

same meaning. The negation scope only applies to the enclosed table and the position of the label

“<” does not alter the semantics. They both assert: “There exists a value in 𝑅.𝐴 s.t. there is no

value in 𝑆.𝐵 that is bigger”, i.e.

∃𝑟 ∈𝑅 [¬(∃𝑠 ∈𝑆 [𝑟 .𝐴<𝑠 .𝐵])] (7)

12
An anchor is a visual element in a diagram that provides a stable reference for logical operations. An anchor makes it pos-

sible to unambiguously represent and compose otherwise hard-to-visualize logical constructs like negation and disjunction.

We originally called those relations “built-in relations” in reminiscence of built-in predicates like < in SQL [76]. We now

prefer the term “anchor relations” as the term also applies to higher-arity, non-built-in predicates such as “R.A+S.B>T.C”
and arithmetic predicates as in “SELECT A+B as C FROM R”. Interesting recent work by Guagliardo et al. [41] calls these

infinite relations “external predicates” and describes a general framework for inferring safety for queries that use them.

13
When clear from the context, we write the table name instead of a table variable.
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After replacing the built-in predicate 𝑟 .𝐴<𝑠 .𝐵 with an anchor relation < , whether it is placed

inside or outside the negation scope (bottom in Figs. 4c and 4d) changes the diagram’s meaning:

∃𝑟 ∈𝑅 [¬(∃𝑠 ∈𝑆, 𝑗 ∈ “<”[𝑟 .𝐴= 𝑗 .$1 ∧ 𝑗 .$2=𝑠 .𝐵])] (8)

∃𝑟 ∈𝑅, 𝑗 ∈ “<”[¬(∃𝑠 ∈𝑆 [𝑟 .𝐴= 𝑗 .$1 ∧ 𝑗 .$2=𝑠 .𝐵])] (9)

Query (8) is identical to (7), but query (9) states something far more permissive: “There exists a

value in 𝑅.𝐴 s.t. there exists a bigger value that is not in 𝑆.𝐵.” For example, assume the database is

𝑅(1) and 𝑆 (2). Then variant (8) is false (as expected), whereas variant (9) is true for the assignment:

𝑅.𝐴=“<”.$1=1 and “<”.$2=3 (since the value 3 does not exist in 𝑆.𝐵).

Achieving a correct translation (the expected interpretation) is straightforward: we require each

anchor relation to be placed in exactly the negation scope that it appears in the TRC expression.

Example 5 (Example 4 continued). Our representation replaced the exact position of the join

predicate with the anchor relation, which nests it in the correct negation scope:

∃𝑟 ∈𝑅 [¬(∃𝑠 ∈𝑆 [∃ 𝑗 ∈ “<”[𝑟 .𝐴= 𝑗 .$1 ∧ 𝑗 .$2=𝑠 .𝐵]])]

5.3 Relational Diagrams with anchor relations are pattern-complete for TRC
We are ready to state our first of two main results of this paper.

Theorem 7 (Full pattern expressiveness). There is an algorithm that translates any well-formed
TRC query into Relational Diagrams extended with anchor relations. That representation has an
unambiguous logical interpretation (there is another algorithm that translates that diagram back into
TRC) and has the same atoms as the original TRC query and thus has the same relational pattern.

The proof consists of constructive, pattern-preserving translations in both directions between TRC

and Relational Diagrams with anchor relations. We next give the translation in one direction and

provide the other direction in the full version [32]. Both directions together provide a solution to

the disjunction problem.

5.3.1 Translation from TRC¬∃∧ to Relational Diagrams with anchor relations. We next give the

straightforward 4-step translation from well-formed TRC¬∃∧ queries into Relational Diagrams

extended with anchor relations. This translation is heavily inspired by the 5-step translation given

in [33] for Relational Diagrams, however it differs in crucial steps: By showing that our translation

preserves all atoms (which includes the assignment predicates) for all well-formed TRC queries, we

also show that our variant can express all relational patterns of TRC. We illustrate the translation

with query (5) from Example 3 displayed in Fig. 5a.

(1) Preprocessing: First, we translate any well-formed TRC into TRC¬∃∧ by preserving its atoms as

described in Section 5.1. Then, we replace every join and selection predicate with the corresponding

anchor relations as described in Section 5.2. Equijoin predicates (𝑅.𝐴 = 𝑆.𝐵) that occur in the same

negation scope as one of their relations 𝑅 or 𝑆 do not need to be replaced (e.g. this is the case in

Fig. 4c after replacing the “<” operator with “=”, but not in Fig. 1c and Example 9). As example,

query (5) is written as:

{𝑞(𝐴) | ∃𝑟 ∈𝑅 [𝑞.𝐴=𝑟 .𝐴 ∧ ¬(∃𝑠 ∈𝑆, 𝑐 ∈ “>0”[𝑠 .𝐴=𝑐.$1∧ (10)

¬(∃𝑟2 ∈𝑅 [¬(¬(∃ 𝑗1 ∈ “=”[𝑟2.𝐵= 𝑗1 .$1 ∧ 𝑗1.$2=𝑠 .𝐵]) ∧
¬(∃ 𝑗2 ∈ “=”[𝑟2 .𝐶= 𝑗2.$1 ∧ 𝑗2.$2=𝑠 .𝐶])) ∧ 𝑟2 .𝐴=𝑟 .𝐴])])]}

Notice that the equijoins “𝑞.𝐴=𝑟 .𝐴” and “𝑟2.𝐴=𝑟 .𝐴” are not replaced with anchor relations
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Fig. 5. (a) Section 5.3.1: Pattern-preserving diagrammatic representation with anchor relations for query (5)
from Example 3 via query (10). (b) Section 7.1: Relational Diagrams can’t preserve the pattern (Example 9) and
need to translate from (6).

(2) Creating canvas partitions: Similar to Relational Diagrams, The scopes of the negations in a

TRC are nested by definition. We translate the nested hierarchy of negation scopes (the negation
hierarchy) into a nested partition of the canvas by dashed boxes with rounded corners.

(3) Placing input, anchor, and output relations: Relation names from each binding atom are placed

into the canvas partition that corresponds to the respective negation scope. Notably, anchor relations

are treated identically as other relations. In particular, multiple occurrences of the same anchor

relation (e.g. <) lead to separate relations being placed in appropriate partitions. For our example,

the binding ∃ 𝑗1 ∈ “=” is represented by an anchor relation = in nesting level 4 of the negation

hierarchy. Clearly inspired by Relational Diagrams, the output relation 𝑄 for non-Boolean queries

and all attributes from its header are represented with a relation Q outside all nesting scopes,

which we refer to as the base partition in reference to the AST. Recall that for well-formed TRC
queries {𝑞(H) | 𝜑}, 𝜑 can contain only one single free variable 𝑞.

(4) Placing equijoin predicates: In contrast to Relational Diagrams, both join and selection predi-

cates are now treated identically as equijoins with appropriate anchor relations. For each equijoin

𝑅.𝐴=𝑆.𝐵 in the query, we simply add two attributes, one for each relation 𝑅 and 𝑆 and connect

them via an unlabeled edge. For table attributes that occur in multiple equijoins, we only draw one

attribute and connect it to multiple edges. Notice that by this construction, the attributes of each

occurrence of an anchor relation are connected to exactly one edge. For example, “𝑟2.𝐵= 𝑗1.$1” is

represented with an edge between attribute B of the 2nd occurrence of relation R with attribute

$1 of the first occurrence of anchor relation = .

Completeness. This 4-step translation guarantees the uniqueness of the following aspects: (1)

nesting hierarchy (corresponding to the negation hierarchy), (2) where input and anchor relations

are placed (canvas partitions corresponding to the negation scope), (3) which relation attributes

participate in equijoins withwhat other relational attributes. Notice that due to our unified treatment

of selection and join predicates as equijoins with appropriate anchor relations, our translation (after

preprocessing) is slightly simpler than the one originally proposed by the authors of Relational

Diagrams [33] and, more importantly, also more general: Any well-formed TRC query can be

represented in a way that preserves all atoms and thus also relational patterns.
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6 Representation B (without anchor relations)
Our preliminary solution from the previous section solves the disjunction problem and even reduces

the necessary vocabulary.
14
However, it has arguably two important problems: (1) We lost the ability

to use standard syntactic safety conditions to determine whether a query is domain-independent.

(2) The anchor relations and multiple nestings of negations increase the visual complexity and

make the diagrams hard to read.
15
The two solutions we introduce in this section are conceptually

simple: In Section 6.1 we substitute the anchor relations with visual formalisms proposed in prior

literature, yet keep our rigorous and principled semantics defined earlier (recall Fig. 4d). Section 6.2

reintroduces disjunctions as (visual) shortcuts for our earlier rigorous semantics. The result is a

precisely defined pattern-preserving diagrammatic representation for any TRC query that allows

visual verification of the safety conditions and that specializes into Relational Diagrams for the

fragment of disjunction-free TRC.

6.1 Substituting anchor relations
6.1.1 Simpler anchors for unary anchor relations. Unary anchor relations consist of two boxes:

the predicate (condition) name (e.g. <4 ) and an attribute box $1 . We eliminate this unnecessary

indirection
16
and substitute both boxes with one box containing the condition (e.g. <4 ). We thereby

also recover visual formalisms from prior proposals, such as VisualSQL [47] and VQL [56] (see

Figs. 2d and 2e): a selection is an equijoin between an attribute and a condition (e.g. A — <4 ). That

condition still provides an anchor and could be in a deeper nesting than the table. We call this the

“canonical” representation.

If the condition is in the same negation scope as the relation, then we apply a shortcut that fuses

the two attributes and thereby recovers the selection formalism used by Relational Diagrams (e.g.

A<4 ).17 Our formalism is thus backward compatible to Relational Diagrams, yet also allows us to

give the condition a separate “anchor”, which we need to express certain relational patterns.

6.1.2 Binary anchor relations. Binary anchor relations consist of three boxes: The predicate name

(e.g. < ) and two attributes connected to the respective relational attributes via equijoins. We

substitute these anchor relations with the symbols that were originally used by Relational Diagrams

as labels on directed edges (arrows), however we give them an explicit bounding box (e.g. < ).

The important difference is that we treat the former labels now as anchors with the full semantic

interpretation we developed in the last section (see e.g. Fig. 6b). This semantics allows us to explicitly

place the anchor in a deeper nesting than either of the relations joined by that comparison predicate

and thereby improve upon the limited pattern expressiveness of Relational Diagrams.

Example 6 (Substituting anchor relations). Consider the Boolean TRC query ∃𝑟 ∈𝑅 [¬(𝑟 .𝐴<4)]
shown in the lower row of Fig. 6a as Representation B. The top row shows Relational Diagrams

with anchor relations which correspond to ∃𝑟 ∈𝑅 [¬(∃𝑐 ∈ “<4”[𝑟 .𝐴=𝑐.$1])]. Next, consider the
Boolean query ∃𝑟 ∈ 𝑅 [¬(∃𝑠 ∈ 𝑆 [¬(𝑟 .𝐴 < 𝑆.𝐵)])] shown as Representation B on the bottom of

14
Our preliminary solution has fewer primitive diagrammatic elements than Relational Diagrams. A selection 𝑅.𝐴 > 0 is

simply represented as equijoin A — $1 where $1 is the only attribute of a table >0 and A is an attribute of a table R .

Thus, there is no “boxed selection” as in A>0 , edges have no labels and no arrows, and there are no “union cells”.

15
There is a reason why we have the disjunction operator in logic and natural language, although it is not strictly necessary.

Citing from [8] on disjunctions: “...the fewer connectives we have, the harder it is to understand our sentences.”
16
This is similar in spirit to Tufte’s recommendation to avoid legends if possible: “labels are placed (directly) on the graphic

itself; no legend is required.” [74]
17
We use a slight blue background for selection conditions as enabling feature (Section 2.1.1), similar to the yellow

background used by QueryVis [19].
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Fig. 6. Example 6(a-b): Representation B at the bottom, and Relational Diagrams with anchor relations at the
top. Example 7 (c-g): ∃𝑟 ∈𝑅 [𝑟 .𝐴=1 ∨ 𝑟 .𝐴=2]: (c): Relational Diagrams. (d): Relational Diagrams with anchor
relations. (e-g): Representation B. (f-g) show our visual shortcut for disjunctions, formally justified with what
we refer to as “De Morgan-fuse boxes”.

Fig. 6b. The top shows Relational Diagrams with anchor relations which correspond to ∃𝑟 ∈
𝑅 [¬(∃𝑠 ∈𝑆 [¬(∃ 𝑗 ∈ “<”[𝑟 .𝐴 = 𝑗 .$1 ∧ 𝑗 .$2 = 𝑠 .𝐵])])]

6.2 Visual shortcut for disjunctions
As already mentioned earlier, frugality in primitive elements has downsides: The fewer connectives

we have, the harder it is to understand our sentences. Despite negation and conjunction being

truth-functionally complete, we regularly use disjunctions in logic and natural language. We next

introduce a visual shortcut for disjunction that allows us to recover a testable safety condition and

that generalizes the various (incomplete) approaches for disjunctions we have seen in Section 3.2.

Our key idea is to keep the formal semantics we have developed so far (and that solves the

disjunction problem), but to allow a visual shortcut that we refer to as “De Morgan-fuse boxes.”

These boxes allow us to express ¬(¬(𝜑1) ∧ . . . ∧ ¬(𝜑𝑘 )), 𝑘 ≥ 2 with 𝜑1 ∨ . . . ∨ 𝜑𝑘 by substituting

nested double negations with bold rectangles, optionally connected via dotted lines.

Definition 8 (De Morgan-fuse boxes). Bold rectangular boxes that are adjacent or connected via
dotted lines represent disjunctions over their contents. Within each box, anchored elements are implicitly
conjoined (i.e., interpreted as a conjunction via juxtaposition).

The overall interpretation of De Morgan-fuse boxes follows De Morgan’s transformation: each box

is treated as being enclosed in its own negation scope, and all such boxes are wrapped by an outer

negation. That is, a disjunction of conjunctions is represented as the negation of a conjunction of

negated boxes.

Example 7 (Simple disjunction). Consider the following disjunction from Section 3.2:

∃𝑟 ∈𝑅 [𝑟 .𝐴=1 ∨ 𝑟 .𝐴=2] (11)

Relational Diagrams need to show two 𝑅 tables, either with union cells (Fig. 2h) or with a double

negation (Fig. 6c):

∃𝑟1 ∈𝑅 [𝑟1 .𝐴=1] ∨ ∃𝑟2 ∈𝑅 [𝑟2.𝐴=2]
¬(¬(∃𝑟1 ∈𝑅 [𝑟1 .𝐴=1] ∨ ∃𝑟2 ∈𝑅 [𝑟2.𝐴=2]))
¬(¬(∃𝑟1 ∈𝑅 [𝑟1.𝐴=1]) ∧ ¬(∃𝑟2 ∈𝑅 [𝑟2 .𝐴=2]))
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Fig. 7. (a) Example 8: Representation B for Example 2 and Fig. 3. (b) Section 7.1: after applying Peirce shading
to (a). (c)-(f) Section 7.1: Peirce shading allows alternative reading of ¬(antecedent ∧ ¬(consequent)) as
antecedent → consequent.

Relational Diagrams with anchor relations replace the selection predicates with equijoins to

two anchor relations (Fig. 6d):

∃𝑟 ∈𝑅 [¬(¬(∃𝑒1∈“=1”[𝑟 .𝐴=𝑒1.$1]) ∧ ¬(∃𝑒2∈“=2”[𝑟 .𝐴=𝑒2.$1]))]
Representation B can represent the statement either via De Morgan (Fig. 6e):

∃𝑟 ∈𝑅 [¬(¬(𝑟 .𝐴=1) ∧ ¬(𝑟 .𝐴=2))]
or via De Morgan-fuse boxes (Fig. 6g), optionally connected via dotted edges (Fig. 6f).

6.3 Representation B is pattern-complete for TRC and preserves safety
We are ready to state our second of two main results of this paper.

Theorem 9 (Pattern-isomorphism and safety of Representation B). Every Relational Diagram with
anchor relations for built-in predicates has a pattern-isomorphic representation as Representation B
and vice versa. At the same time, Representation B preserves the safety conditions of TRC, i.e. the
syntactic safety conditions can be directly verified from the diagrammatic representation.

The proof uses constructive translations from TRC to Representation B and back that are [Error:

Link “pattern-preserving” does not exist] and safety-preserving. Representation B thus solves both

the disjunction and the safety problem. Recall that TRC¬∃∧∨ preserves the relational pattern and

the safety conditions. Because our translation from TRC¬∃∧∨ preserves the negation scopes, the

disjunctions, and all atoms from the AST, the 4 safety conditions from Section 4.2 can be immediately

read and verified from a Representation B diagram. Figure 7 discusses our running example.

Example 8 (Example 2 continued). The TRC query from Example 2 and its AST from Fig. 3 is

equivalent to the following safe TRC¬∃∧∨ fragment:

{𝑞(𝐴, 𝐵) | (𝑞.𝐴 = 0 ∧ (∃𝑟 ∈𝑅 [𝑞.𝐵 = 𝑟 .𝐵] ∨𝑞.𝐵 = 1))
∨ (∃𝑟2 ∈𝑅 [𝑞.𝐴 = 𝑟2.𝐴 ∧ 𝑞.𝐵 = 𝑟2.𝐵 ∧ (12)

¬(∃𝑠 ∈𝑆 [¬(∃𝑟3 ∈𝑅 [𝑟2.𝐴 = 𝑟3.𝐴 ∧ 𝑟3.𝐵 = 𝑠 .𝐵])])])}
Figure 7a shows Representation B for this query. Notice how the 4 explicit safety conditions from

Section 4.2 can be applied directly on this diagram to verify that this query is explicitly safe.
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Fig. 8. (a), (b) Example 9: Peirce shading applied to Representation B by translating from query (5) (TRC¬∃∧)
(a), or (b) directly from query (4) (TRC¬∃∧∨) with our notation for disjunctions: De Morgan-fuse boxes (b).
(c) Section 7.1: De Morgan-fuse boxes do not change the parity of a zone and thus effortlessly interact with
Peirce shading.

6.4 Size of representation
Representation B has the same asymptotic size as TRC. The proof follows from the fact that the

leaves of the AST (and the negation and disjunction scopes) get directly mapped to objects in the

diagram. At the same time, Representation B is an exponentially smaller representation of TRC
than Relational Diagrams. This is because Relational Diagrams require CNF formulas to be first

transformed into DNF (i.e. to have disjunctions or unions as the root, which requires an exponential

blow-up in size), while our approach leaves disjunctions as inner operators in the AST.

Proposition 10 (Size preservation of TRC). Representation B has the same asymptotic size as TRC
and can be exponentially smaller than Relational Diagrams.

7 Enabling Features, Perceptual Choices, and Generality of Representation B
We add an enabling feature to Representation B (Section 7.1) and justify its perceptual choices

(Section 7.2). The full version [32] additionally shows how Representation B unifies and generalizes

prior representations for disjunctions.

7.1 Peirce shading as enabling feature
We next add alternative shading as enabling feature (Section 2.1.1) to Representation B. This idea
was originally proposed by Peirce [58, Paragraph 4.621] and became known in the diagrammatic

reasoning community due to Sowa [66, 67]. Define the parity of a zone in the diagram as positive if
it is nested within an even number of negation scopes (including zero), and negative if it is nested
within an odd number of negation scopes. Then, to improve contrast and facilitate reading, shade

negative areas in gray and keep positive areas in white.

A fascinating aspect of Peirce shading is that it is a surprisingly effective enabling feature that

“enables” multiple readings of a given diagram: It helps humans read universal quantifiers without a
need for an additional dedicated symbol. Peirce called a nesting of a positive zone within a negative

zone (as in Fig. 7c) a scroll and observed that it can be alternatively read as “either 𝑅 is false or 𝑆 is
true” or “if 𝑅 is true, then 𝑆 is true.” Peirce shading (Fig. 7d) makes the second reading more explicit.
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Fig. 9. Section 7.2: Our design choices in the larger context of the visual grammar of node-link diagrams
and relationship representations. The notation in this figure is heavily inspired by Ware’s “semantic pattern
mappings” [80], but modified to our context of logical diagrams.

Similarly, consider the Boolean query (Fig. 7e)

∀𝑟 ∈𝑅 [∃𝑠 ∈𝑆 [𝑟 .𝐴 = 𝑠 .𝐴]] (13)

Without universal quantifiers, it needs to be rewritten as

¬(∃𝑟 ∈𝑅 [¬(∃𝑠 ∈𝑆 [𝑟 .𝐴 = 𝑠 .𝐴])]) (14)

Applying then Peirce shading to it, as in Fig. 7f, recovers the former reading more easily.

See also Fig. 7b which applies Peirce shading to Fig. 7a from Example 8.

Example 9 (Example 3 continued). Figure 5a showed Example 3 as Relational Diagram with

anchor relations. Figure 8a now shows Representation B by translating from query (5) in TRC¬∃∧.
In contrast, Fig. 8b shows Representation B by translating directly from the TRC¬∃∧∨ query (4)

and using disjunctions. Both are pattern-isomorphic representations of the original formulas.

Since the semantics of our De Morgan-fuse boxes hinges on double negation, they do not change
the parity of a zone in which they appear. Peirce shading therefore aligns naturally with disjunction,

and disjunction boxes can be seen as visual shortcuts, providing a post hoc justification for the

name De Morgan-fuse boxes (Fig. 8c).

7.2 Perceptual justification of our solution
Our main contribution in this paper is a representation system that solves the disjunction and the

safety problems with its constitutive features. We discuss here some of our perceptual choices and

the enabling features of Representation B that facilitate interpretation but are not constitutive.

Chamberlin in his recent CACM article on SQL [16] states “Our specific goals were to design a
query language with the following properties: ... user with no specialized training could, in simple
cases, understand the meaning of a query simply by reading it. We called this the ‘walk-up-and-read’
property.” Diehl [23] writes: “If done right, diagrams group relevant information together to make
searching more efficient, and use visual cues to make information more explicit.” Similarly, our goal

was to develop an (𝑖) intuitive and (𝑖𝑖) principled diagrammatic representation for (𝑖𝑖𝑖) arbitrary

nestings of disjunctions, (𝑖𝑣) with minimal additional notations. Our solution Representation B is

heavily inspired by the design choices of Relational Diagrams and meets the challenge without

introducing any fundamentally novel visual symbol to the visual grammar of Relational Diagrams.
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(e) 4 [28, Fig. 44]
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B
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(f) 4 Query (18)

Fig. 10. Section 8.1: Representation B representations for challenging examples raised in prior work.

We merely give a stricter syntactic interpretation of edge label anchor boxes for built-in predicates,

allow constants outside table attributes, and allow disjunction boxes used inside diagrams.

Figure 9 shows how our conservative extension with disjunctions fits into the overall visual

grammar and semantic patterns (sometimes called “codes”) of node-link diagrams and relationship

representations [79]. AsWarewrites, “a good diagram takes advantage of basic perceptualmechanisms
that have evolved to perceive structure in the environment” [79], and we tried to follow that practice.

Notice how our choices of disjunctions inherit the “nested regions” code from negation scopes and

De Morgan, while also using the “shapes in proximity” code (widely used and known from UML)

and alternatively the “shapes connected by contour” code.

8 Solutions to prior challenging queries
We show how our solution solves prior representation challenges.

8.1 Examples from Section 1
Figure 10 gives solutions to 4 challenges listed in Section 1. We use the word “query” also for a

statement (i.e. a Boolean query). Images from the original literature are given in the full version [32].

1 Figure 10b shows Representation B for Fig. 10a, a visual representation given in two presen-

tations [70, 71] by Thalheim. The representation reads as:

∃𝑟 ∈𝑅 [𝑅.𝐴=1 ∨ 𝑅.𝐵=2 ∨ (𝑅.𝐶=3 ∧ 𝑅.𝐷=4)] (15)

2 Figures 10c and 10d show Representation B for the two challenges listed in [33]:

∃𝑟 ∈𝑅, 𝑠 ∈𝑆 [𝑟 .𝐴<𝑠 .𝐸 ∧ (𝑟 .𝐵<𝑠 .𝐹 ∨ 𝑟 .𝐶 <𝑠 .𝐺)] (16)

∃𝑟 ∈𝑅 [(𝑟 .𝐴>0 ∧ 𝑟 .𝐴<10) ∨ (𝑟 .𝐴>20 ∧ 𝑟 .𝐴<30)] (17)

3 Gardner in his 1958 book ‘Logic Machines and Diagrams’ [28] discusses a challenging dis-

junction and concludes that “there seems to be no simple way in which the statement, as it stands,
can be diagrammed” [28, Section 4.3]:

(𝐴 ∨ 𝐵) → (𝐵 ∨𝐶) (18)

He proposes what he calls a diagrammatic compound statement that needs to repeat the individual

predicates (Fig. 10e). Figure 10f showsRepresentation B for query (18), which follows from rewriting
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46 (79%)
48 (83%)
49 (84%)
52 (90%)
55 (95%)
58 (100%)

Datalog
Relational Algebra

QBE
QueryVis

Relational Diagrams
Representation B

Fig. 11. Section 8.2: Fraction of pattern-isomorphic representations among 58 queries across 5 textbooks.
Representation B is the first diagrammatic representation to achieve 100% coverage.

the statement as¬((𝐴∨𝐵)∧¬(𝐵∨𝐶)). Notice atomic propositions like𝐴 can be interpreted as nullary

(0-ary) relations𝐴() that can be set to true or false. In other words, a symbol “𝐴” is true if and only if

“∃𝑎 ∈𝐴”, i.e. thus table 𝐴 is not empty. Also notice that this example illustrates the value of treating

disjunction as a primitive operator and diagrammatic element. Rewriting the disjunction using De

Morgan’s laws results in a significantly more complex expression: ¬(¬(¬𝐴 ∧ ¬𝐵) ∧ (¬𝐵 ∧ ¬𝐶)).
4 Most interesting is Fig. 1a, whichwas raised as a challenge in the earlier mentioned tutorial [31].

Here we point out an issue that – to the best of our knowledge – has never been raised in the

literature on visual representation and diagrammatic reasoning: There are two different ways to

interpret the figure shown in Fig. 1a:

∃𝑟 ∈𝑅 [(∃𝑠 ∈𝑆 [𝑟 .𝐴=𝑠 .𝐴] ∧ 𝑟 .𝐵 = 0) ∨ (𝑟 .𝐵=1 ∧ 𝑟 .𝐶=2)] (19)

∃𝑟 ∈𝑅, 𝑠 ∈𝑆 [(𝑟 .𝐴=𝑠 .𝐴 ∧ 𝑟 .𝐵 = 0) ∨ (𝑟 .𝐵=1 ∧ 𝑟 .𝐶=2)] (20)

The difference is that query (19) is true on the database 𝑅={(9, 1, 2)}, 𝑆 =∅, whereas query (20) is

false. The reason is the different scoping of 𝑆 . Our principled translation into Representation B
with De Morgan-fuse boxes creates the two distinct diagrams shown in Fig. 1 and can thus handle

the distinction, as expected. We do not know any prior diagrammatic representation that could

represent and thus distinguish between those two interpretations.

8.2 100% coverage of textbook benchmark
The authors of Relational Diagrams [33] gathered 58 queries from the relationally complete fragment

from 5 popular database textbooks [18, 20, 24, 61, 65] and made them available on OSF.
18
We refer to

that set simply as “the textbook benchmark.” They evaluated the pattern expressiveness of various

text-based and diagram-based languages (we replicate their numbers) and showed that Relational

Diagrams covered 95% (55/58) of the queries in that benchmark. Our approach is pattern-complete

for TRC and thus achieves 100% pattern coverage (Fig. 11).

Figure 12 shows one of 3 queries that Relational Diagrams cannot pattern-represent, its AST,

and its pattern-isomorphic representation in Representation B: “Make a list of project numbers for

projects that involve an employee whose last name is ‘Smith’, either as a worker or as manager of

the controlling department for the project” [24, Query 4, Ch. 8.6]. The other two queries are given

in the full version [32].

9 Conclusion
We proposed Representation B, a principled diagrammatic representation system that can express

any well-formed TRC query without changing its table signature, thereby solving the disjunction

problem, a long-standing gap around disjunctions in diagrammatic query representations. Our

solution rests on 3 ideas: (𝑖) reifying join and selection predicates as anchor relations, (𝑖𝑖) giving

existing visual notations a clean relation-based semantics, and (𝑖𝑖𝑖) introducing De Morgan-fuse

boxes as a visual formalism for disjunction that can be applied to subtrees of the AST representation

18
Textbook benchmark: https://osf.io/u7c4z/. Reproducibility report: [78].
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(a) [24, Query 4, Ch. 8.6]

Q

pnumber

Project

dnum

pnumber

Employee

lname='Smith'

ssn

Works_ON

pno

essn

Employee

lname='Smith'

ssn

Department

mgr_ssn

dnumber

(b) Representation B

QUERY
├─ OUTPUT: Q(pnumber)
└─ QUANTIFIER ∃

├─ BINDING: p ∈ Project
└─ AND ∧

├─ PREDICATE: Q.pnumber = p.pnumber
└─ OR ∨

├─ QUANTIFIER ∃
│  ├─ BINDING: w ∈ Works_on
│  ├─ BINDING: e ∈ Employee
│  └─ AND ∧
│     ├─ PREDICATE: w.pno = p.pnumber
│     ├─ PREDICATE: w.essn = e.ssn
│     └─ PREDICATE: e.lname = 'Smith'
└─ QUANTIFIER ∃

├─ BINDING: d ∈ Department
├─ BINDING: e ∈ Employee
└─ AND ∧

├─ PREDICATE: d.dnumber = p.dnum
├─ PREDICATE: d.mgr_ssn = e.ssn
└─ PREDICATE: e.lname = 'Smith'

(c) AST

Fig. 12. Section 8.2: Query from the textbook benchmark that cannot be represented in a pattern-isomorphic
way by prior diagrammatic approaches and the solution in Representation B.

of TRC queries and that composes naturally with negation scopes. Together, these ideas unify and

extend the 3 main prior diagrammatic approaches to disjunction.

Finding an accurate representation for the relationally complete fragment of relational query

languages was important because all relational query languages such as SQL, and even relational

programming languages such as Rel [5] are grounded in first-order logic. As large language models

(LLMs) increasingly take over query generation, users need help in understanding the produced

queries, especially as they grow more complex [35]. Automatically generated diagrammatic repre-

sentations that preserve the relational patterns of queries and that support progressive disclosure

(via collapse/expand interactions) can serve as an “explanation layer” and assist users in interpreting

these complicated queries more effectively.

Many open problems remain, in particular: 1) How to support advanced language features

from practical languages, such as aggregates, recursion, and bag semantics (see [36] for recent

progress). 2) Our focus in this work was feasibility, not usability. Are there other topologically

different representations and/or enabling features that help users understand queries faster and

more accurately? Part of those questions may have to be evaluated with comparative user studies

[33, 49]. We view Representation B as a foundation for a broader agenda in the context of human-AI

collaboration where query understanding via visual query representations becomes part of the

regular human-query interaction [29].
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