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Learning from few labels with

Semi-supervised learning
exploit relationships on label distribution
(e.g. smoothness in networks)

weak
labeled abels

\ unlabeled-data

Weak (or distant) supervision
add noisier labels (e.g. heuristics,
or external knowledge base)

Algebraic amplification
leverage algebraic properties of the
algorithm to amplify signal in sparse data
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Algebraic cheating
this requires "nice" algebraic properties;
we may have to modify the algorithms ©



Our focus today: Node classification in undirected graphs

Preference among node classes =  Compatibilities between classes
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orange prefers blue (and v.v.)
green prefers green



Our focus today: Node classification in graphs

Preference among node classes =  Compatibilities between classes
most of which are unlabeled not known to us ®
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ivearized belief propagatiov,
sewmi-supervised learnivg

Goal: Classify the remaining nodes p%’opagate those compatibilities

t .
State-of-the-art: Heuristics | domain experts
we will estimate (learw) from sparse data




How well does it work?



Time and Accuracy for label propagation if we know H
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Time and Accuracy if we need
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Estimation uses inference as subroutine (thus slower) ®
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Time and Accuracy with our method ©
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of the time later needed for labeling ©

No more need for heuristics or domain experts ©



What is the trick?



Splitting parameter estimation into two steps

Sparsely labeled
network

Parameter Estimation

Derived statistics for Compatibility
path lengths 1,2,...,¢ matrix
0 (mk?) kxk matrices 0(k*) kxk matrix

Factorized Optimization
graph representations

independent of graph size

livear v # edges (m)
ond # of classes (k)

Label Propagation

)i

Fully labeled
network
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A myopic view: counting relative neighbor frequencies
Fully labeled graph Sparsely labeled graph

’
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A myopic view: counting relative neighbor frequencies
Fully labeled graph Sparsely labeled graph

’

Assume £=10% labeled vodes.
What is the percentage of 7
edges with labeled end points

Neighbor count Gold standard compatibilities
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Distant compatibility estimation (DCE)
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Distant compatibility estimation (DCE)
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Expected signals for neighbors

graph with:

* m edges

[ fraction labeled nodes
* d node degree

Expected # of labeled %
neighbors of distance £

d*"'mf? expected neighbors
of distance ¥

ldea: amplify the signal from
observed length-# paths ©
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Distant compatibility estimation (DCE) DETAILS

0.2 0.6 0.2 distance-smoothed energy function
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one single hyperparameter ©
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Two technical difficulties

1. Idea from previous page
gives biased estimates ®
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1. We must ignore
backtracking paths

2. Calculating longer paths leads
to dense matrix operations ®
(W = sparse adjacency matrix)

10'- 10 sec too long
| for 10k nodes ®
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2. Requires more careful re-
factorization of the calculation

N "factorized graph representations' 16



Scalable, Factorized Path summation

Details

PROPOSITION 4.2 (NON-BACKTRACKING PATHS). Let Wg%
. ; () ;
be the matrix with WNB:‘j being the number of non-

backtracking paths of length € from node i to j. Then ng);
for € > 3 can be calculated via following recurrence relation:

wd =wwl" - -nw? (15)
with starting values WS% =W and WS% =W?-D. O

ALGORITHM 4.3 (FACTORIZED PATH SUMMATION). Itera-

tively calculate the graph summaries ?gﬁ, for € € [€max] as
follows:

(1) Starting from NSI)S = WX and Ng% = WNI(\}% - DX,
iteratively calculate Ng]; = WN%;U - (D - I)Ng;; 2

(2) Calculate Ml(\‘% = XTNS’%.

(3) Calculate f’% from normalizing M'© with Eq. 9.

PROPOSITION 4.4 (FACTORIZED PATH SUMMATION). Algo-

rithm 4.3 calculates all graph statistics Pﬁ% for € € [€max] in
O(mktmax) |

Intuition

Relational algebra
m, (R(X) ™ S(X,y)
= R(x) ™ m,S(x,y)

_ (X = thin label matrix)
Linear algebra

W-W). X
= W-(W:-X
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Scalable factorized path summation

Similar ideas of factorized calculation:

Generalized distributive law
[Aji-McEliece IEEE TIT '00]

Algebraic path problems
[Mohri JALC'02]

Valuation algebras
[Kohlas-Wilson Al'08]

Factorized databases
[Olteanu-Schleich Sigmod-Rec'16]

FAQ (Functional Aggregate Queries)
[AboKhamis-Ngo-Rudra PODS'16]

Associative arrays
[Kepner, Janathan MIT-press'18]

Optimal ranked enumeration
[Tziavelis+ VLDB'20]

Intuition

Relational algebra
m, (R(X) ™ S(X,y)
= R(x) ™ m,S(x,y)

_ (X = thin label matrix)
Linear algebra

W-W). X
= W-(W:-X
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More details (super happy to discuss further in 1-on-1's)

1. /Constrained optimization — unconstrained opt. in free parameters
2./ Closed form for gradient: gradient-based optimization even faster

Random restarts for optimization: but for an optimization on graph
sketches, thus independent of n, yet 0(k*)

Energy-minimization based explanation of LinBP
Originally proposed "centering" for LinBP not necessary
Proof of unbiased estimator for equal label distribution

Non-backtracking paths in factorized calculation that does not
require larger (2mX2m) "Hashimoto matrix"

Lots of experiments on real graphs
9. Even works on graphs without any labeled neighbors ©
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Back to the big picture



"Algebraic cheating" for approximation-aware learning

Model

Labeleo Algebraic
% cheating
— =
Approximation- ApProx. Inference
aware Learning Model

LiInEP
DCE
4
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Thank you ©
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