New Results for the Complexity of Resilience for Binary Conjunctive Queries with Self-Joins

PODS – June 2020

<u>Cibele Freire</u>, Wolfgang Gatterbauer, Neil Immerman, Alexandra Meliou

Resilience

$$q := R(x, y), P(x, z)$$
 TRUE FALSE

Closely related to Deletion propagation with source-side effects.

<u>Data complexity</u> of Resilience for conjunctive queries.

Self-join-free CQ

(prior results [PVLDB 2015])

No triad

q:-R(x,y),P(x,z)

Definition (triad): A set of three atoms, $\{S_0; S_1; S_2\}$ such that for every pair i, j, there is a path from S_i to S_j that uses no variable occurring in the other atom.

Triad

$$q_{\triangle}:=R(x,y),S(y,z),T(z,x)$$

Self-join-free CQ

(prior results [PVLDB 2015])

No triad

$$q:=R(x,y),P(x,z)$$

Triad

$$q_{\triangle}:=R(x,y),S(y,z),T(z,x)$$

easy ← Dichotomy → hard

Self-join-free CQ Now with self-joins

No triad

$$q_{vc} := R(x), S(x, y), R(y)$$

Triad

$$q^{sj}_{\wedge}:=R(x,y),R(y,z),R(z,x)$$

If q has a triad, then RES(q) is NP-complete.

Lemma: $RES(q_{vc})$ is NP-complete.

Overview for self-join case

Triads still imply resilience is hard

• If no triads, then

Path

Chain

Confluence

Permutation

For a subclass of queries with self-joins

No triads

$$q_{\text{conf}} := A(x), R(x, y), R(z, y), C(z)$$
 $q_{\text{chain}}^{\text{ac}} := A(x), R(x, y), R(y, z), C(z)$

For self-join queries, dual hypergraph is not as useful.

Binary single-self-join queries (ssj-CQ)

Moving forward we restrict the set of queries to have

- unary and binary relations; and
- only one relation can be part of a self-join, usually denoted as R.

Binary directed graphs

$$q_{\text{conf}} := A(x), R(x, y), R(z, y), C(z)$$

$$\bigcap_{x \to y}^{A} \xrightarrow{R} \bigcap_{z}^{C}$$

$$q_{\mathrm{chain}}^{\mathrm{ac}} := A(x), R(x, y), R(y, z), C(z)$$

$$\begin{array}{ccc}
A & & C \\
C & & \\
X & \xrightarrow{R} & y & \xrightarrow{R} & C
\end{array}$$

RES(q_{chain}) is NP-complete

Paths

Theorem: Let q be a single-self-join query. If q has a unary or binary path, then RES(q) is NP-complete.

Proof: Reduction from RES(q_{vc}).

No triads, no paths

Binary Graph	PTIME cases	NP-hard cases
$x \xrightarrow{R} y \xrightarrow{R} z$	No PTIME case	$ \begin{array}{cccc} A & B & C \\ \vdots & R & P & R \\ x & & & & & & & & & & \\ x & & & & & & & & & & & & \\ x & & & & & & & & & & & & & \\ & & & & & &$
$x \xrightarrow{R} y \xleftarrow{R} z$	$ \begin{array}{ccc} A & B & C \\ & \vdots & & Q \\ & x & y & \longleftarrow z \end{array} $	$\vdots \xrightarrow{R} y \xleftarrow{R} z$
$x \stackrel{R}{\longleftrightarrow} y$	$ \begin{array}{c} A \\ \vdots \\ X \\ R \end{array} $	$ \begin{array}{c} A & B \\ X & R & Q \\ R \end{array} $
$\bigcap_{x \to R} y$	$\bigcap_{x} \bigcap_{R} \bigcap_{y} A$	No NP-hard case

2-chain

Binary Graph	PTIME cases	NP-hard cases
$x \xrightarrow{R} y \xrightarrow{R} z$	No PTIME case	$ \begin{array}{ccc} A & B & C \\ \vdots & R & F & \vdots \\ x & & & & & & & & & \\ x & & & & & & & & & & \\ & & & & & & & & &$
$x \xrightarrow{R} y \xleftarrow{R} z$	$ \begin{array}{cccc} A & B & C \\ & & \vdots & & Q \\ & & & & & z \end{array} $	$ \begin{array}{ccc} & & & & & & & & \\ & & & & & & & & \\ & & & & $
$x \stackrel{R}{\longleftrightarrow} y$	$ \begin{array}{c} A \\ \vdots \\ X \\ R \end{array} $	$ \begin{array}{c} A & B \\ R & Q \\ R \end{array} $
$\bigcap_{x \xrightarrow{R} y}^{R}$	$\bigcap_{x} \bigcap_{R} \bigcap_{y} A$	No NP-hard case

2-confluence

Binary Graph	PTIME cases	NP-hard cases
$x \xrightarrow{R} y \xrightarrow{R} z$	No PTIME case	$ \begin{array}{cccc} A & B & C \\ \vdots & R & P & R & \vdots \\ x & & & & & & & & \\ x & & & & & & & & & \\ & & & & & & & & & &$
$x \xrightarrow{R} y \xleftarrow{R} z$	$ \bigcap_{X} \xrightarrow{R} y \xleftarrow{R} \bigcap_{Z} $	$\vdots \xrightarrow{R} y \xleftarrow{R} z$
$x \stackrel{R}{\longleftrightarrow} y$	$ \begin{array}{c} A \\ \vdots \\ X \\ R \end{array} $	$\bigcap_{x} \underbrace{R}_{R} \bigcap_{y}$
$\bigcap_{x \xrightarrow{R} y}^{R} y$	$\bigcap_{x} \bigcap_{R} \bigcap_{y} Y$	No NP-hard case

2-permutation

Binary Graph	PTIME cases	NP-hard cases
$x \xrightarrow{R} y \xrightarrow{R} z$	No PTIME case	$ \begin{array}{ccc} A & B & C \\ \vdots & R & P & Z \\ x & & & & & & & & & & \\ x & & & & & & & & & & & & \\ & & & & & & &$
$x \xrightarrow{R} y \xleftarrow{R} z$	$ \begin{array}{ccc} A & B & C \\ & & \vdots & & Q \\ & & & & & & & & & & & \\ & & & & & &$	$ \begin{array}{ccc} & & & & & & & & \\ & & & & & & & & \\ & & & & $
$x \stackrel{R}{\longleftrightarrow} y$	$ \begin{array}{c} A \\ \vdots \\ X \\ R \end{array} $	$\bigcap_{x} \bigoplus_{R} \bigcap_{y}$
$\bigcap_{x \longrightarrow R} y$	$\bigcap_{x \to y}^{R} \bigcap_{y}^{A}$	No NP-hard case

Variable repetition

Binary Graph	PTIME cases	NP-hard cases
$x \xrightarrow{R} y \xrightarrow{R} z$	Using network flow! No PTIME case	$ \begin{array}{cccc} A & B & C \\ \vdots & R & P & Z \\ x & & & & & & & & & & \\ & & & & & & & & &$
$x \xrightarrow{R} y \xleftarrow{R} z$	$ \begin{array}{cccc} A & B & C \\ & & & \\ & & $	$ \begin{array}{ccc} & & & & & & & & \\ & & & & & & & & \\ & & & & $
$x \stackrel{R}{\longleftrightarrow} y$	$ \begin{array}{c} A \\ \vdots \\ X \\ R \end{array} $	$\bigcap_{x} \underbrace{R}_{R} \bigcap_{y} \underbrace{R}_{y}$
$\bigcap_{x \xrightarrow{R} y} y$	$ \begin{array}{ccc} R & A \\ & & $	No NP-hard case

Dichotomy for ssj-CQ with 2 R-atoms

Theorem: Consider q an ssj-CQ, with at most two occurrences of the self-join relation. If q has any of the following

- triad
- path
- chain
- confluence with exogenous path
- bounded permutation

then RES(q) is NP-complete. Otherwise, RES(q) is in P.

Unifying hardness criterion

Many cases to consider even in very restrictive settings. However:

- all polynomial cases are solved with a reduction to network flow
- there are common patterns in the different reductions we defined

<u>Independent Join Paths:</u> property of a database with relation to a query. If a query admits such database, we conjecture that RES(q) is NP-complete.

Thanks! Questions?