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Resilience
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Closely related to Deletion propagation with source-side effects.

Data complexity of Resilience for conjunctive queries.




Self-join-free CQ

(prior results [PVLDB 2015])
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Definition (triad): A set of three atomes,
{So; S1; S5} such that for every pairi,j , there
is a path from §; to §; that uses no variable
occurring in the other atom.




Self-join-free CQ

(prior results [PVLDB 2015])

No triad Triad
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Self-join-free CQ

Now with self-joing

No triad Triad
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If g has a triad, then RES(q) is\/

NP-complete.

Lemma: RES(q,,) is NP-compIete.X




Overview for self-join case

* Triads still imply resilience is hard

* If no triads, then
\
* Path
: : For a subclass of
e Chain > :> . ISR
* Confluence queries with selt-jJoins
* Permutation J




No triads
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For self-join queries, dual hypergraph is not as useful.



Binary single-self-join queries (ssj-CQ)

Moving forward we restrict the set of queries to have

e unary and binary relations; and
* only one relation can be part of a self-join, usually denoted as R.



Binary directed graphs
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Theorem: Let g be a single-self-join query. If g has a unary or binary
path, then RES(q) is NP-complete.

Proof: Reduction from RES(q,.).



No triads, no paths

No NP-hard case
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2-chain
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2-confluence

Binary Graph PTIME cases NP-hard cases
A B C
R R "SR “ ¥R LN
X=—rY =z No PTIME case | x > Y Pz
A B C H*
R R (Lpivgp R R
X =—d Y =7 | '1nurunun X e | o 7 smmsimsi | mremaes X e || 7 iusizuus
A A B
R R QA r (Y
x=)y ........ x—)(y ........ x—)iy ........
R R R
R R A
- Qg QY
x=—>Yy e ol No NP-hard case




2-permutation

Binary Graph PTIME cases NP-hard cases
A B C
R R "W R ¥R
X=—rY =z No PTIME case | x > Y Pz
A B C H*
R R (Lp:er(d R R
X =—d Y =7 | '1nurunun X e | o 7 smmsimsi | mremaes X e || 7 iusizuus
A A B
R %R QA r (Y
x<=)y ........ x—)!y ........ x—)ty ........
R R R
R R A
- Qg QY
x=—>Yy e ol No NP-hard case

14



Variable repetition

Binary Graph

PTIME cases

NP-hard cases

Using network flow!
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Dichotomy for ssj-CQ with 2 R-atoms

Theorem: Consider g an ssj-CQ, with at most two occurrences of the
self-join relation. If g has any of the following

* triad

* path

* chain

* confluence with exogenous path
* bounded permutation

then RES(q) is NP-complete. Otherwise, RES(q) is in P.



Unifying hardness criterion

Many cases to consider even in very restrictive settings. However:
* all polynomial cases are solved with a reduction to network flow
* there are common patterns in the different reductions we defined

Independent Join Paths: property of a database with relation to a query.
If a query admits such database, we conjecture that RES(q) is NP-

complete.




Thanks!
Questions?



