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Abstract— When processing join queries over big data, a
DBMS can become unresponsive, i.e., it takes very long until
any output tuples appear. Ranked enumeration addresses this
problem by attempting to return the most important answers as
quickly as possible, ideally in time that is linear (or quasilinear) in
input size, even if the complete output is much larger. Aside from
its practical usefulness, ranked enumeration is closely related to,
and in a way unifies, several other problems involving joins.
The common goal is the design of optimal algorithms that are
guaranteed to avoid large intermediate results and thus achieve
time or space complexity close to a lower bound. Arguably,
avoiding query plans that produce huge intermediate results has
been an overarching goal of database optimizers, which is part
of the reason why optimal join algorithms, enumeration, and
factorized representations have generated a lot of excitement.
In this tutorial, we embark on an exploration of these topics,
showing how they are intimately connected with a wide range of
fundamental problems in computer science.

Index Terms—ranked enumeration, join queries, ranking func-
tion, factorized representations

I. INTRODUCTION

In many data science applications, a query may have a

combinatorially large number of answers or intermediate re-

sults, especially if it involves joins of more than 2 relations.

As a consequence, traditional join techniques can take too

long until they return any tuple to the user. To tackle this

issue, approaches like enumeration have emerged that aim to

return some answer early, followed by all the others in quick

succession [1], [2]. Enumeration is particularly useful in the

presence of some notion of importance, i.e., a way to decide

which answers are preferred over others. This paradigm of

query answering is called ranked enumeration [3], and it may

avoid wasting resources on low-ranked answers. This is similar

in spirit to classic top-k algorithms [4], but now k does not

need to be known in advance and the goal is to give strong

guarantees for time and space complexity.

Solving the general problem of ranked enumeration is chal-

lenging because, in addition to joins, the query may involve

other operators such as selection, projection, union, and aggre-

gation, or complex join predicates such as inequalities. These

challenges provide an opportunity to survey classic results and

recent developments, such as those in the theory of optimal

join algorithms [5], [6], enumeration [1], [7], and factorized

representations of query results [2], [8]. We revisit several of

these areas, which all aim for optimality and contain necessary

ingredients to the unifying problem of ranked enumeration. To

get a sense of the fascinating questions that arise when looking

at these areas through the lens of ranked enumeration, consider

the widely used Dynamic Programming (DP) approach [9].

The strength of DP is an efficient search for the best answer

in a combinatorially large search space. The question ranked

enumeration asks is: how can we efficiently find the second-

best answer, then the third-best, and so on?

II. TUTORIAL INFORMATION

Audience. This tutorial is aimed at anybody who has ever

worried about the time it takes for their query to return any

answer. Long delays are quite common when joining large

input, especially when more than 2 relations are involved

or when the join predicate contains conditions other than

equality. In addition to theoretical results with strong asymp-

totic guarantees, we also discuss encouraging recent empirical

results [3], [8] that show the practicality of ranked enumeration

and the shortcomings of existing DBMS approaches.

Prerequisites. This tutorial does not have a hands-on com-

ponent and no software tools are required by the audience.

To make all material accessible to those interested in the

practical impact of the techniques, the tutorial will favor

intuitive examples and explanations over low-level technical

details. We only assume familiarity with concepts covered in

typical undergraduate database and algorithms classes.

Outline. This 3-hour tutorial consists of six main parts:

1) Shortest Paths and the “Top-1” Problem

2) Acyclic Queries and Unranked Enumeration

3) Cyclic Queries

4) Ranked Enumeration

5) Factorizeed Join Representations

6) Relationship to Other Problems
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We will conclude with a variety of open research problems.

Slides and videos of the tutorial will be made available on the

tutorial web page.1

Prior Offerings. We presented a related 1.5 hour tutorial at

SIGMOD 2020 [10].2 That previous shorter version focused

on the distinction between classic top-k algorithms and the

recent paradigm of ranked enumeration. Aside from greater

depth and breadth in covering ranked enumeration, this tutorial

includes a broader range of closely related problems, including

optimization problems, unranked enumeration, factorized join

representations, and direct access to query query answers.

III. TUTORIAL CONTENT

Throughout the tutorial, n denotes input size (e.g., the

number of tuples in a database), r denotes the number of

possible solutions (e.g., the number of query answers) and

we generally express results in terms of data complexity.

A. Shortest Paths and the “Top-1” Problem

Dynamic Programming (DP) [9] is the archetypical ap-

proach for problems whose solutions have a shared structure.

In a weighted graph, we may want to count the number of

paths between 2 nodes or to find the shortest one. For DAGs,

the Bellman-Ford algorithm [11] finds the shortest path in

linear time using DP. The benefit of DP is that typically

its running time is close to the problem’s representation size

(e.g., the number of edges) and that it avoids looking at all

possible solutions, which can be exponentially many (e.g., the

paths). The shortest-path problem is conceptually similar to

optimization problems that ask for “the best” solution among

the possible ones. We call these problems “top-1” because they

have a second-best solution, and third-best and so on. These

are the problems that admit ranked enumeration.

In databases, aggregation tasks over joins display a similar

shared structure. For example, a query may ask for the

COUNT of a join or to find the MIN over the SUM of the join

answer attributes. The latter is a top-1 problem since there is a

join answer with the second-best SUM. Like paths in a graph,

join answers have a shared structure: In the same way that an

edge may participate in several paths, a database tuple may

participate in several join answers. Thus, it is not surprising

that similar techniques have been developed for aggregation

tasks over joins: For example, if the joining relations can be

organized in a path, DP finds the top-1 SUM in time linear

in database size [12], [13]. However, the path analogy does

not capture the full generality of queries. Even for queries

that are acyclic, the structure of joining relations can be a tree

instead of a path. For these tree-structured problems, Non-

Serial Dynamic Programming (NSDP) [14], a generalization

of DP from paths to trees, can solve top-1 problems efficiently.

A natural question to ask is which tasks can be solved by

this general algorithm. The answer lies in algebraic structures

called (commutative) semirings, which are at the core of

1https://northeastern-datalab.github.io/responsive-dbms-tutorial/
2https://northeastern-datalab.github.io/topk-join-tutorial/

efficient algorithms across computer science [15]. General

frameworks have been developed for incorporating any such

semiring [13], [16], [17]. Going back to the MIN-SUM exam-

ple, the (min,+) operators indeed belong to a semiring. The

algebraic abstraction is powerful because the same algorithm

can be used for many different problems by simply plugging in

a different semiring. As aforementioned, ranked enumeration

is restricted to top-1 problems, where the semiring needs to

have an additional property called selectivity [18].

B. Acyclic Queries and Unranked Enumeration

A fundamental algorithm for acyclic joins is due to Yan-

nakakis [5]: It returns the complete output in O(n + r)
time, which is optimal since it is necessary to read the input

and write the output. Its secret of success lies in semi-join

reductions [19]: With two passes over the data, it removes all

dangling tuples and guarantees that any intermediate join result

can be extended to a valid output tuple. As it turns out, these

semi-join reductions are also a special case of the general DP

algorithm using an appropriate (Boolean) semiring.

After reducing the input relations, the Yannakakis algorithm

joins them to produce the full result. A small modification to

this second phase gives rise to constant-delay enumeration [1].

This modification requires a shift of perspective: instead of

breath-first (one table at-a-time), the input tuples are traversed

depth-first. This delivers some answers very quickly, while

maintaining the time complexity for returning all output tuples.

The situation is more tricky with projections. Bagan et al. [1]

show that queries called free-connex allow constant-delay enu-

meration after linear-time preprocessing, and (under common

complexity-theoretic assumptions) these are the only queries

(without self-joins) that admit such an algorithm. Later work

pursued similar dichotomies for more general settings such as

unions of queries [20], allowing database updates [21], [22],

or incorporating functional dependencies [23]. Interestingly,

even though the task here is to enumerate answers in no

particular order, most of these algorithms have an underlying

lexicographic order on the attributes.

C. Cyclic Queries

Even though the optimality guarantees of Yannakakis and

its adoptions to enumeration only apply to acyclic queries,

the same tools can be leveraged for cyclic queries using

tree decompositions [24], albeit with a complexity penalty.

Originating from the concept of the treewidth of a graph

[25], the key idea is to eliminate cycles by grouping multiple

elements of a cycle together into a “bag” and treating them as

one element. The goal is then to reduce the problem structure

to an acyclic one that can be handled efficiently, only at the

cost of computing these bags of elements—known as the

width of the decomposition. In the case of queries, a bag

of relations implies that their complete join output must be

materialized and the width parameter determines the size of the

intermediate result. A flurry of decomposition techniques with

ever-decreasing width parameters have been developed, [26]–

[32], with the current frontier being the submodular-width
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decompositions [32]. The key innovation, from a practical

point of view, is that they decompose a cyclic query into a

union of multiple trees, each receiving a subset of the input.

This enables lower widths: for a query that computes 4-

cycles in a graph, a single-tree decomposition must materialize

O(n2)-size bags, while a decomposition into multiple trees is

possible with O(n1.5)-size bags.

Tree-decomposition techniques do not eliminate the need

for cyclic-join evaluation, since each bag still needs to be

materialized. Unfortunately, as Ngo et al. [6] show, for join

queries with cycles the optimal O(n+r) bound of Yannakakis

is unattainable based on well-accepted complexity-theoretic

assumptions. They therefore propose the notion of worst-
case-optimal join (WCOJ) algorithms [33] of time complexity

O(n+rWC), where rWC denotes the size of the largest possible

output of a query over any database instance of size n. For

rWC, Atserias, Grohe, and Marx [34] provide a tight upper

bound by connecting join-output size to the fractional edge
cover of the corresponding query hypergraph, now known

as the AGM bound. Several WCOJ algorithms have been

proposed to match the AGM bound [6], [35]–[37].

D. Ranked Enumeration

Ranked enumeration [3], [8], [38]–[43] for join queries is

the problem at the center of the tutorial. A ranked-enumeration

algorithm returns the join answers in the order of importance

as imposed by a ranking function. Its goal is to minimize

the time for returning the k top-ranked answers for every
value of k. This paradigm generalizes the more well-known

top-k and is also reminiscent of the general concept of an

anytime algorithm [44]. In order to emphasize this, we refer

to ranked-enumeration algorithms also as “any-k” algorithms

as a shorthand for “anytime top-k” or “top-k for any k.”

Due to the relationship of the top-1 problem to the shortest-

path problem and DP, any-k is closely connected to ranked

enumeration of paths in a weighted graph [3]. This view

allows us to reveal common foundations between a variety

of solutions that had been proposed in isolation, often re-

inventing the wheel. We will demonstrate how most existing

algorithms rely on two different major techniques. The first

is the Lawler-Murty procedure [45], [46] that had been used

in the database community to design algorithms for ranked

enumeration [40] and for graph-pattern search [41], [47].

The second technique exploits a generalization of the DP

principle of optimality to enumerate paths recursively [48],

[49]. The same recursive call structure has been rediscovered

in recent work on ranked enumeration for join queries [39].

While it was previously believed [3] that these two approaches

have unique advantages and are incomparable (when query

complexity is also accounted for), we will present a single

unified algorithm that combines the best of both worlds [50].

We will focus on the simpler case of ranked enumeration

for paths because it allows us to decouple the core algorithmic

techniques of ranking from other concerns that are relevant

to general queries. To lift any-k from paths to general join

queries, we make full use of the toolbox discussed in other

parts of the tutorial. Paths are generalized to tree structures via

NSDP, cyclic queries are decomposed to trees via tree decom-

positions, free-connex queries are handled by eliminating the

projections, and complex join predicates are factorized into

efficient representations.

E. Factorized Join Representations

This part of the tutorial focuses on how to construct, from

a database instance and given join query with complex join

conditions, intermediate representations that are compact and

quickly traversable. These representations are not limited to

ranked enumeration, but extend to many other tasks such as

answering Boolean queries, aggregates, and unranked enu-

meration. While earlier parts of the tutorial illustrate how

these are captured by different forms of DP and shortest-

paths, this section focuses on the graph construction itself.

Already for equi-joins, obtaining the best possible bounds for

any-k requires a careful representation that groups tuples with

the same join-attribute-value together [3]. This fundamental

insight, present in all equi-join algorithms such as a hash-join,

is also the key idea behind factorized databases [2], [51].

This framework can accommodate more complex join pred-

icates and gives rise to interesting questions about their most

efficient representation. These predicates include inequali-

ties [52] (<), non-equalities [1] (�=), DNF formulas thereof

[8], as well as higher-arity predicates (Not-all-equal) [53]. As

an example, the inequality A < B can be naively represented

as a single O(n2) relation containing all A,B value pairs that

satisfy the predicate. A more efficient representation as a join

of two relations can lower the size to O(n log n) [8].

F. Relationship to Other Problems

To conclude the tutorial, we discuss related problems that

do not fit under the general framework of ranked enumeration.

One such problem is selection [54]: instead of enumerating

the answers to a query in order until some position (say,

the median), is it possible to directly “jump” to that answer

efficiently? And what changes if, akin to the enumeration

framework, we require multiple such accesses after a pre-

processing phase [55]? Perhaps surprisingly, these kinds of

problems had not been explored until recently and many

questions remain open.

Another direction that has been heavily studied is that of

top-k. Existing work on top-k for joins [4], [56] adopted a

cost model that does not penalize large intermediate results.

In our previous tutorial [10], we extensively compared the

implications of such a model on the design and perfor-

mance of algorithms. Finally, top-k techniques for single-table

queries [57] are different than the topic of this tutorial. These

often have a geometric nature [58] and rely on early pruning.

IV. PRESENTERS

Nikolaos Tziavelis is a PhD candidate at Khoury College

of Computer Sciences of Northeastern University. His research

aims to extend database technology with improved algorithms

that achieve non-trivial guarantees. He received a MEng in
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PostDoc at University of Washington and Assistant Professor

at Carnegie Mellon’s Tepper School of Business.

Mirek Riedewald is an Associate Professor at Khoury

College of Computer Sciences at Northeastern University. He

received his PhD from the University of California at Santa

Barbara and held positions as Research Associate at Cornell

University as well as visiting positions at Microsoft Research

in Redmond and at the Max Planck Institute for Informatics
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