Recorded version: Sept 21, 2011

Databases will visualize queries too

Wolfgang Gatterbauer

Aug 30, 2011 (VLDB'11)

Interactions between Users and Queries are hard


```
Recent work on Query Management:

Idea: Re-use and adapt existing queries

CQMS Khoussainova+ [CIDR'09]

SQL QuerIE Chatzopoulou+ [SSDBM'09]

SQLshare Howe+ [MS eSc WS'10]

DBease Li+ [CIDR'11]
```

Problem:

Query Interpretation is hard too!

even used for testing purposes, e.g., on www.gradiance.com

Browsing & Understanding existing Queries is hard

hard

Can Query Visualization help?

Query Intent: "Find all actors with Bacon number 2."

Four principal ways for Query Interpretation

"A picture is worth 1000 words"

Text

"... **P** is the set of problems that can be solved quickly... **NP** is the set of decision problems where we can verify a YES answer quickly if we have the solution in front of us... A problem is **NP-hard** if a polynomial-time algorithm for would imply a polynomial-time algorithm for every problem in NP... If the answer to a problem in **co-NP** is NO, then there is a proof of this fact that can be checked in polynomial time...a problem is **NP-complete** if it is both NP-hard and an element of NP."

Visual

"...what we think the world looks like" according to

Erickson [lecture notes'09]

Query Visualization vs. Visual Query Languages

Visual Interpretation vs. Visual Composition

Communication Medium

<u>Suggestion</u> (why VQL have not found wide adoption): Visual composition is an inherently sequential process. In contrast, Query Visualization is different and can use the full bandwith of human visual perception.

The Challenge

```
Find the appropriate visual alphabet which

(i) allows users to quickly understand a query's intent,

(ii) can be easily learned by users, and

(iii) can express a large fraction of SQL.
```

Additionally, find (iv) **automatic translations** from SQL to the visualization.

Agenda

- 1) Why Query Visualization?
- 2) The Development of QueryViz

(joint work with Jonathan Danaparamita)

Inspiration from Diagramatic Reasoning

Diagramatic reasoning systems | Howse [ICCS'08]

"There is an element that is a student or a teacher but not both, and the set of Teachers is empty."

"s represents an individual in the set C − A 🖸 B iff s represents the same individual as t."

Inspired by Euler graphs, Venn diagrams, existential graphs by C. Sanders Pierce

Idea: use topological properties, such as enclosure, to represent logical expressions and set-theoretic relationships

First-Order Logic (FOL) representation of SQL

select a from R where b not IN (select d from S)

SQL I ■ FOL a: $\exists b.\exists c.[R(a,b,c) \land \neg(\exists d.\exists e.[S(d,e) \land b=d])]$

Design decision 1: start from FOL representation of SQL queries and represent it with topological properties

DB schemas as familiar visual construct

<u>Design decision 2</u>: start from known visual UML metaphors for DB schemas

Incremental Complexity

<u>Design decision 3</u>: gradually extend known visual metaphors for CQs

Q: Find persons that frequent <u>some</u> bar that serves <u>only</u> drinks they like.

Logical transformations

Likes(person, drink) Frequents(person, bar) Serves(bar, drink, price)

select F.person

Frequents F

not exists

(select

from

and

where

from

where

Design decision 5: limited logical transformation can further simplify representation

Q: Find persons that frequent a bar so that they like all drinks served.

Q: Find persons that frequent some bar so that there is no drink served that the person does not like.

S.drink

Serves S

not exists (select

from

and

where

S.bar = F.bar

L.drink

Likes L

L.person = F.person S.drink = L.drink))

Q: Find persons that frequent some bar that serves only drinks they like.

QueryViz for Query Intent, not Debugging

Discontinuity with NULL values

Empty result if S.B contains NULL

Discontinuity with empty tables

<u>Design decision 6</u>: minimum visual complexity 2 possible overloading and ambiguity just as in NL

http://queryviz.com

QueryViz

- 1. How to visualize outer joins, sorting, arithmetic expressions, etc.?
- 2. What is the appropriate level of abstraction? (intent vs. debugging)
- 3. What are the appropriate basic visual metaphors?
- 4. Can we visualize at different granularities? ("zooming in")
- 5. How can we visualize query fragments?
- 6. How to adapt visualizations to audiences? ("one size fit all")
- 7. How to optimally place the visual elements?
- 8. How to standardize evaluation of alternative approaches? ("TPC-H for speed of Query Interpretation" via user studies)

- 1. How to visualize outer joins, sorting, arithmetic expressions, etc.?
- 2. What is the appropriate level of abstraction? (intent vs. debugging)

- 1. How to visualize outer joins, sorting, arithmetic expressions, etc.?
- 2. What is the appropriate level of abstraction? (intent vs. debugging)
- 3. What are the appropriate basic visual metaphors?

- 1. How to visualize outer joins, sorting, arithmetic expressions, etc.?
- 2. What is the appropriate level of abstraction? (intent vs. debugging)
- 3. What are the appropriate basic visual metaphors?
- 4. Can we visualize at different granularities? ("zooming in")
- 5. How can we visualize query fragments?
- 6. How to adapt visualizations to audiences? ("one size fit all")
- 7. How to optimally place the visual elements?
- 8. How to standardize evaluation of alternative approaches? ("TPC-H for speed of Query Interpretation" via user studies)

The Vision in a Nutshell

- Q Visualization can facilitate Q Composition through
 - (i) faster Q Interpretation and thus Q Re-use, and
 - (ii) a visual understanding of SQL design patterns.

② "Databases will visualize queries too"