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Probabilistic inference

« key algorithmic problem in probabilistic Al
- e.g. Probabilistic Graphical Models (PGMs)

- e.g. Statistical Relational Learning (SRL)
- e.g. Probabilistic Databases (PDBs)

. ® well-known to be #P-hard

— either identify tractable cases
— or find approximations
« © Anytime approximation framework
— create more and more refined bounds
— until you get a certain error guarantee

Logic Probability

@

error

time



Probabilistic inference

error

« Deterministic anytime approximation
- returning guaranteed upper and lower bounds

« Good bounds are important
— prior work uses model-based (MB) bounds

-

time
» 7 Problem
- exponentially many bounds to choose from (they are quite different)

- how to choose bounds (perhaps even better ones)?

Our approach:
—Embed the combinatorial model-based space of lower bounds within a
: , then use continuous optimization



Agenda

1. Probabilistic inference
— Boolean formulas, anytime approximations



Probabilistic inference: when it is easy

P = X1Y1 V X1Y2 V X2¥3
=X (y1 VvV 3’2)} V\xzy%

V1 L @,

Ple] =P [x(y1Vy2)|QP[xzy5]
= (110(q1992))R(P20Oqgs3)

/O /N
P1 / ®\ P2 qs3

d1 d>

BACKGROUND

Read-once (RO) expression
= Plp1 V @2] = 1-(1-Ple; D (1- P[g;])
= P[p,] O P[g,]

Plx] =p;  Ply;] =q;
parse tree
expression that allows us

to calculate P[]

5 leaf nodes (5 variables)



Probabilistic inference: when it is hard BACKGROUND

P = X1Y1 VX1V VX2V, P4 NN
= x1Y1 V Y2(X1 V x2) X5 Vs
< >

Plp] =piOP[p[1/x]]®p;OP[p[0/x]]  "Decomposition”

= 10,0107, B, O (p,Og3) with Shannon expansion
(total probability theorem)

/69\ parse tree

O 0) .
T £ % BN
P1 /®\ D4 /@\

T a2 D2 q3

6 leaf nodes (4 variables)



Anytime compilation of Boolean formulas BACKGROUND

e parse tree
/O /N
p X P1 ©
' / \ ! / \ Olteanu, Huang, Koch [ICDE'10]
q1 q2 P2 43 Fink, Olteanu [ICDT'11]

Fink, Huang, Olteanu [VLDBJ'13] 3



Anytime compilation of Boolean formulas BACKGROUND

Lip] <
O parse treeis
/ \ /@\ = lower and upper bounds

propagate to the root

P1 p O
/ \ ! / \ Olteanu, Huang, Koch [ICDE'10]

Llp1] = q2 P> q3 Fink, Olteanu [ICDT'11]

Fink, Huang, Olteanu [VLDBJ'13] 3



Anytime compilation of Boolean formulas BACKGROUND

D
@/ \@ grow partial "d-trees"
N _/ AN ("decomposition tree")
X1 Xl
A A = try to bound early;
continue if too lose
LB[¢]
j arse treeis
— p

/@\ = lower and upper bounds
propagate to the root

2 ©
b1 ) \ P / \ Olteanu, Huang, Koch [ICDE'10]
D2

LB[g4] < q2 q3 Fink, Olteanu [ICDT'11]

Fink, Huang, Olteanu [VLDBJ'13] 10



But how do we get the bounds?

/
T

That's where the magic happens.

BACKGROUND

11



Model-based bounds (MBs) BACKGROUND

« Model-based bounds (MBs):

— Intuition: replace repeated variables with 0 or 1 to make ¢ read-once

@ = X1)1 \/@’2 VX2V e.g., replace 2" instance of x; with 1 (True)
Py =X1y1 V. Vo VX5 result is simpler and upper bound

« Remaining problem

— How to choose from d™ options? Each may lead to very different bounds.

* assuming n variables repeated, each with d repetitions
* E.g. we encountered formulas withn = 1225 and AVG(d) = 5.6

— Prior work chooses randomly

Fink, Olteanu [ICDT'11]

Fink, Huang, Olteanu [VLDBJ'13] 1



Agenda

2. Better bounds
— how to find better bounds than "model-based"” bounds



Oblivious Bounds for Monotone Boolean functions
PROBLEM

Given: Q= g01V§02
Replace it with: @' = @1[x"/x]V @2[x" /x] (let's call it dissociation)

G., Suciu [TODS'14]

How to choose p’ and p”’ s.t. we get a lower bound P[¢'] < P[¢] (or upper bound)

RESULT

Opt. Oblivious Upper p'=p, p'=p
bounds: Lower (1-p)(1-p")=1-p
Model-based Upper p'=p, p'=1
bounds: Lower p'=p, p'=0
EXAMPLE

@ =2x1y1V X1 Y2 VX2V
and all probabilities are 0.5 Then P[@]=0.5




Lower bounds by default are not good

[___]Diss. on Supplier |1
[_IBest of both Diss.

W % [ IPart dissociated
used "Symmetric 0.6l m jﬁ >< Actual Probability |
/ dissociations” (SDs) F
0.55}
/ -
/ lower bounds ___—— | ﬂm%ﬁF

were very bad 05|

1 0.65

6 16152117 1 1120 3 5

0.45
1

Figure from G., Suciu [TODS'14]

Conclusion at the time was to just use upper bounds and ignore the lower bounds

G., Suciu [VLDB’15]

G., Suciu [VLDBJ'17]
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Definition scaled dissociation (informal)

Scaled dissociation (informally): Find the maximal lower
bounds among all that fulfill the constraints.

Then use this bound as lower bound for anytime approximation

16



Finding scaled dissociations is not trivial

« Optimization problem is not nice ®
- non-linear objective function
— non-convex constraint set
— This makes it difficult to apply optimization methods

« What we are goingtodo ©

- We perform a change of variables s.t. we can instead solve
a over convex sets

— Then apply known gradient-descent (GD) methods

17



Reduction to convex constraint set DETAILS

We observe that we can

max f (41, 9q2)
1-Plx]=(0-q)1-q2) =0A-PxD“A-P[x]% =a%h*

q; (S [0,1]

tas One probability

(0,0,1) simplex A; for
max g( aq, ay) More generally, for d>2 each variable 7
a;+a,=1 Zje[aﬂ Clj=1 (0,1,02
a; € [0,1] a €[0,1]¢ a;
(1,0,0)
@1

Optimization problem over a set of

aopr = arg max{g((@y, @, ... &n))|a@; € Ay, i € [n]}
18



Gradient Descent methods

Optimization problem over

Projected GD (PGD)

¢!
(2)()

1. Move in the direction of the gradient

2. Project back into A

Conditional GD (CGD)

A S
4 o

~
~
~
~
~

o(0)
(1)

1. Move in the direction of the optimal point
in A assuming a linearized approximation

.. with "some" step size

19



More details in the paper about making this fast DETAIL

« Gradient can be calculated efficiently

— we have read-once formulas, connection to influence of a variable
Kanagal, Li, Deshpande [SIGMOD'11]

« Evaluate g(a ) and Vg(a ) only once per optimization step

— To guarantee convergence of to local optimum by PGD and CGD, we
would have to re-evaluate g(a ) and Vg (a ) multiple times per step

- But we are able to bound differences between gradients in different
points in A. Thus no need to re-evaluate

20



Instantiations of anytime approximation framework

e a general framework that allows combinations of instantiation

Procedure Decisions Choices
Method MB, SD, PGD, CGD
1. Find bounds # Steps 1,10
X
2. Decompose \

\

grayed out please see paper
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3. Experiments & Take-aways



How does it perform in practice?

« Tried on 4800 lineages
— Obtained as lineages of hard queries (synthetic, TPC-H, Yago3)
« Compared 39 instantiations of the anytime approximation framework

— with model-based (MB), symmetric lower bound, scaled dissociation (PGD, CGD)
- Including various node and variable selection strategies

Take-away message

o our gradient descent (GD) methods perform overall the best.
« Improves prior model-based methods (MB), sometimes quite a lot.
« GD methods should not do too many steps (no need to wait for convergence)

« Details are in the paper. We illustrate next with one synthetic example

23



Experiment: time needed to reach fixed error guarantee

Data

« Boolean chain query

REISEY)T(Y)

o Tuples randomly sampled
from domain with size prop

to relation size

 probabilities in [0,0.1]

Error guarantees

« Calculate relative &-
approx. from bounds U

and L

ratio —
L

€

Olteanu+[ICDE'10]

3
1.5
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1

0.5
0.2
0.1
0

MB: relative epsilon-approximation +——— MB (prior): model-based

103§ 10 random bounds

102§

|

|

*

|

1
i i i
OOTDUE W~ O

10_2§

1073 ———————r ——r ———
10 107 o 10° 10*
Lineage Size

notice the log scale!
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Experiment: time needed to reach fixed error guarantee

MB: relative epsilon-approximation +——— MB (prior): model-based

Data 10%; 10 random bounds
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Experiment: time needed to reach fixed error guarantee

Data

« Boolean chain query

RCASY)T(Y)

o Tuples randomly sampled
from domain with size prop

to relation size

 probabilities in [0,0.1]

Error guarantees

« Calculate relative &-
approx. from bounds U

and L

ratio —
L

€

Olteanu+[ICDE'10]
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Experiment: time needed to reach fixed error guarantee

Data

« Boolean chain query

REISEY)T(Y)

o Tuples randomly sampled
from domain with size prop

to relation size

 probabilities in [0,0.1]

Error guarantees

« Calculate relative &-
approx. from bounds U

and L

ratio —
L

€

Olteanu+[ICDE'10]
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Experiment: time needed to reach fixed error guarantee

Data L0 PGD: relative epsilon-approximation
« Boolean chain query | --%-- 0.0
REOS(xy)T() o] 0y
 Tuples randomly sampled 0.3
from domain with size prop YT-—x-- 04
to relation size | ~A 0.5
--m-- (.6
« probabilities in [0,0.1] -—e-- (.7
-—-- (.8
--¢-- (.9

Error guarantees

« Calculate relative ¢-

10~ @
approx. from bounds U P
andL ad
ratio | € -
10_2§
3 0.5 :
1.5 (0.2 -
1.22 | 0.1 10_31 102 103
. . 10 10 10
1 0 Lineage Size

Olteanu+[ICDE'10]

notice the log scale!

PGD (our): projected
gradient descent



Experiment: time needed to reach fixed error guarantee

Data

« Boolean chain query
RE)SEY)TH)

o Tuples randomly sampled
from domain with size prop

to relation size

 probabilities in [0,0.1]

Error guarantees

« Calculate relative ¢-

approx. from bounds U

andL
I‘athE €

3 0.5
1.5 0.2
1.22 | 0.1
1 0

Olteanu+[ICDE'10]

103 5

median >100 sec (timed
MB and PGD: relative epsilon—afproximation

———--
—_——_—--
—— ——

399k faster

100 msec

(]> 1000 x fhster

T
Lineage Size

notice the log scale!

Ty

lﬁgtzprior): model-based
10 random bounds

PGD (our): projected
gradient descent

Take-away

« considerable
speed-ups
possible ©
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Toke-aways
and open Points



Take-aways & open points scaled dissociations

Problem: anytime approximations for probabilistic inference
e need to choose from exponentially many model-based approximations (MB)*
« How to get good bounds fast?

Our solution:
e Replace exponentially many UBs with one single better one
° « Embed the combinatorial model-based space of LBs within a
Then use gradient-descent (GD) methods (with some tweaks, see paper)

' Result:

* e« consistent speed-ups, at times considerable Th
anks! ©

Yet to understand:
e Properties of optimization: When is finding the best LB hard, when easy?
? « |terative update methods that work better (but convergence...)
e Isthere a principled, perhaps optimization-based approach, to selecting variables for
Shannon expansion with the goal of reducing error of approximation?

* exponential in number of repeated variables

31
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Relative e-approximation  Olteanu, Huang, Koch[ICDE'10]

U L
e-valid interval iff <
1+e \1—c¢
—1
Numerical example . ratio%
WY g=06 %— 1 05 | 3
then €=0.2 e==—p 02 | 15
p— - return 0.5 1+ T 01 | 1.22
0.05| 1.1
—L L=0.4 0 1
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Probabilistic inference . .
. : A Logic Probabilit
key algorithmic problem in various areas such as Probabilistic Databases, 8! Y

Al, and Statistical Relational Learning. Well known to be hard@

Branch & Bound type Anytime Algorithms
approximations with flexible accuracy/time trade-off error

X but how to choose among combinatorially many bounds?

Key idea:

. embed combinatorial space of bounds within a continuous space

Results: time
- continuous optimization problem (gradient descent) + better bounds at times >100x faster

- considerable speed-ups across various data sets
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