Anytime Approximation in Probabilistic Databases via Scaled Dissociations SIGMOD 2019

Maarten Van den Heuvel
U of Antwerp

Peter Ivanov

Northeastern U

Wolfgang Gatterbauer*
Northeastern U

Floris Geerts
U of Antwerp

Martin Theobald
U of Luxemburg

Team

Wolfgang Gatterbauer*

Floris Geerts

Martin Theobald

Probabilistic inference

- key algorithmic problem in probabilistic AI
- e.g. Probabilistic Graphical Models (PGMs)
- e.g. Statistical Relational Learning (SRL)
- e.g. Probabilistic Databases (PDBs)

Probabilistic inference

- Deterministic anytime approximation
- returning guaranteed upper and lower bounds
- Good bounds are important
- prior work uses model-based (MB) bounds

- ? Problem
- exponentially many bounds to choose from (they are quite different)
- how to choose bounds (perhaps even better ones)?
- Our approach: scaled dissociations
-Embed the combinatorial model-based space of lower bounds within a continuous enlarged space, then use continuous optimization

Agenda

1. Probabilistic inference

- Boolean formulas, anytime approximations

2. Better bounds

- how to find better bounds than "model-based" bounds

3. Experiments \& Take-aways

Not discussed (please see paper or stop by at the poster)

- Probabilistic databases \rightarrow Lineage
- How to select variable to decompose, and leaves to expand
- Various technical details

$$
\begin{aligned}
\varphi & =x_{1} y_{1} \vee x_{1} y_{2} \vee x_{2} y_{3} \\
& =\underbrace{x_{1}\left(y_{1} \vee y_{2}\right)}_{\varphi_{1}} \vee \underbrace{x_{2} y_{3}}_{\varphi_{2}} \\
\mathbb{P}[\varphi] & =\mathbb{P}\left[x_{1}\left(y_{1} \vee y_{2}\right)\right] \otimes \mathbb{P}\left[x_{2} y_{3}\right] \\
& =\left(p_{1} \odot\left(q_{1} \otimes q_{2}\right)\right) \otimes\left(p_{2} \odot q_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Read-once }(\text { RO }) \text { expression } \\
& \begin{aligned}
\Rightarrow \mathbb{P}\left[\varphi_{1} \vee \varphi_{2}\right]= & 1-\left(1-\mathbb{P}\left[\varphi_{1}\right]\right)\left(1-\mathbb{P}\left[\varphi_{2}\right]\right) \\
= & \mathbb{P}\left[\varphi_{1}\right] \otimes \mathbb{P}\left[\varphi_{2}\right] \\
& \text { "independent-or" } \\
\mathbb{P}\left[x_{i}\right]=p_{i} \quad & \mathbb{P}\left[y_{j}\right]=q_{j}
\end{aligned}
\end{aligned}
$$

parse tree
expression that allows us to calculate $\mathbb{P}[\varphi]$

5 leaf nodes (5 variables)

$$
\begin{aligned}
\varphi \quad & =x_{1} y_{1} \vee x_{1} y_{2} \vee x_{2} y_{2} \\
& =x_{1} y_{1} \vee y_{2}\left(x_{1} \vee x_{2}\right)
\end{aligned}
$$

$$
\mathbb{P}[\varphi]=p_{1} \odot \mathbb{P}\left[\varphi\left[1 / x_{1}\right]\right] \oplus \overline{p_{1}} \odot \mathbb{P}\left[\varphi\left[0 / x_{1}\right]\right]
$$

$$
=p_{1} \odot\left(q_{1} \otimes q_{2}\right) \oplus \overline{p_{1}} \odot\left(p_{2} \odot q_{3}\right)
$$

"Decomposition" with Shannon expansion (total probability theorem)
parse tree
expression that allows us to calculate $\mathbb{P}[\varphi]$

parse tree

Olteanu, Huang, Koch [ICDE'10]
Fink, Olteanu [ICDT'11]
Fink, Huang, Olteanu [VLDBJ'13]

1. parse tree is monotone
\Rightarrow lower and upper bounds propagate to the root

Olteanu, Huang, Koch [ICDE'10]
Fink, Olteanu [ICDT'11]
Fink, Huang, Olteanu [VLDBJ'13]

Anytime compilation of Boolean formulas

2. grow partial "d-trees"
("decomposition tree")
\Rightarrow try to bound early; continue if too lose

1. parse tree is monotone
\Rightarrow lower and upper bounds propagate to the root

Olteanu, Huang, Koch [ICDE'10]
Fink, Olteanu [ICDT'11]
Fink, Huang, Olteanu [VLDBJ'13]

But how do we get the bounds?

That's where the magic happens.

Model-based bounds (MBs)

- Model-based bounds (MBs):
- Intuition: replace repeated variables with 0 or 1 to make φ read-once

$$
\begin{aligned}
\varphi & =x_{1} y_{1} \vee x_{1} y_{2} \vee x_{2} y_{2} & & \text { e.g., replace } 2^{\text {nd }} \text { instance of } x_{1} \text { with } 1 \text { (True) } \\
\varphi_{U} & =x_{1} y_{1} \vee \quad y_{2} \vee x_{2} y_{2} & & \text { result is simpler and upper bound }
\end{aligned}
$$

- Remaining problem
- How to choose from d^{n} options? Each may lead to very different bounds.
- assuming n variables repeated, each with d repetitions
- E.g. we encountered formulas with $n=1225$ and $\operatorname{AVG}(d) \approx 5.6$
- Prior work chooses randomly

Agenda

1. Probabilistic inference

- Boolean formulas, anytime approximations

2. Better bounds

- how to find better bounds than "model-based" bounds

3. Experiments \& Take-aways

Oblivious Bounds for Monotone Boolean functions

 PROBLEMGiven:

$$
\varphi=\varphi_{1} \vee \varphi_{2}
$$

Replace it with: $\quad \varphi^{\prime}=\varphi_{1}\left[x^{\prime} / x\right] \vee \varphi_{2}\left[x^{\prime \prime} / x\right] \quad$ (let's call it dissociation)
How to choose p^{\prime} and $p^{\prime \prime}$ s.t. we get a lower bound $\mathbb{P}\left[\varphi^{\prime}\right] \leq \mathbb{P}[\varphi]$ (or upper bound)

RESULT

Opt. Oblivious Upper $p^{\prime}=p, p^{\prime \prime}=p$
bounds: Lower $\left(1-p^{\prime}\right)\left(1-p^{\prime}\right)=1-p$
Model-based Upper $p^{\prime}=p, p^{\prime \prime}=1$
bounds: Lower $p^{\prime}=p, p^{\prime \prime}=0$

EXAMPLE

$$
\varphi=x_{1}^{\prime} y_{1} \vee x_{1}^{\prime \prime} y_{2} \vee x_{2} y_{2}
$$

and all probabilities are $0.5 \quad$ Then $\mathbb{P}[\varphi]=0.5$

Lower bounds by default are not good

Figure from G., Suciu [TODS'14]
Conclusion at the time was to just use upper bounds and ignore the lower bounds
G., Suciu [VLDB'15]
G., Suciu [VLDBJ'17]

Definition scaled dissociation (informal)

Scaled dissociation (informally): Find the maximal lower bounds among all that fulfill the constraints.

Then use this bound as lower bound for anytime approximation

Finding scaled dissociations is not trivial

- Optimization problem is not nice
- non-linear objective function
- non-convex constraint set
- This makes it difficult to apply optimization methods
- What we are going to do
- We perform a change of variables s.t. we can instead solve a non-linear optimization problem over convex sets
- Then apply known gradient-descent (GD) methods

Reduction to convex constraint set

We observe that we can reformulate the constraints

$$
\begin{aligned}
& \max f\left(q_{1}, q_{2}\right) \\
& 1-\mathbb{P}[x]=\left(1-q_{1}\right)\left(1-q_{2}\right)=(1-\mathbb{P}[x])^{\alpha_{1}}(1-\mathbb{P}[x])^{\alpha_{2}}=a^{\alpha_{1}} b^{\alpha_{2}} \\
& q_{j} \in[0,1]
\end{aligned}
$$

$$
\begin{aligned}
& \max g\left(\alpha_{1}, \alpha_{2}\right) \\
& \alpha_{1}+\alpha_{2}=1 \\
& \alpha_{j} \in[0,1]
\end{aligned}
$$

More generally, for $\mathrm{d}>2$

$$
\begin{aligned}
& \sum_{j \in[d]} \alpha_{j}=1 \\
& \boldsymbol{\alpha} \in[0,1]^{d}
\end{aligned}
$$

Optimization problem over a set of convex probability simplexes

$$
\boldsymbol{\alpha}_{\mathrm{OPT}}=\arg \max \left\{g\left(\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \ldots \boldsymbol{\alpha}_{n}\right\rangle\right) \mid \boldsymbol{\alpha}_{i} \in \Delta_{i}, i \in[n]\right\}
$$

Gradient Descent methods

Optimization problem over convex probability simplexes

Projected GD (PGD)

Conditional GD (CGD)

1. Move in the direction of the gradient
2. Project back into Δ
3. Move in the direction of the optimal point in Δ assuming a linearized approximation
... with "some" step size

More details in the paper about making this fast

- Gradient can be calculated efficiently
- we have read-once formulas, connection to influence of a variable

Kanagal, Li, Deshpande [SIGMOD'11]

- Evaluate $g(\boldsymbol{\alpha})$ and $\nabla g(\boldsymbol{\alpha})$ only once per optimization step
- To guarantee convergence of to local optimum by PGD and CGD, we would have to re-evaluate $g(\boldsymbol{\alpha})$ and $\nabla g(\boldsymbol{\alpha})$ multiple times per step
- But we are able to bound differences between gradients in different points in Δ. Thus no need to re-evaluate

Instantiations of anytime approximation framework

- a general framework that allows combinations of instantiation

Procedure	Decisions	Choices
1. Find bounds	Method	MB, SD, PGD, CGD
	\# Steps	1, 10
	Strategy	local, global
2. Decompose	Variable selectiig	Occmax, Imax, etc.

grayed out please see paper

Agenda

1. Probabilistic inference

- Boolean formulas, anytime approximations

2. Better bounds

- how to find better bounds than "model-based" bounds

3. Experiments \& Take-aways

How does it perform in practice?

- Tried on 4800 lineages
- Obtained as lineages of hard queries (synthetic, TPC-H, Yago3)
- Compared 39 instantiations of the anytime approximation framework
- with model-based (MB), symmetric lower bound, scaled dissociation (PGD, CGD)
- Including various node and variable selection strategies

Take-away message

- our gradient descent (GD) methods perform overall the best.
- Improves prior model-based methods (MB), sometimes quite a lot.
- GD methods should not do too many steps (no need to wait for convergence)
- Details are in the paper. We illustrate next with one synthetic example

Experiment: time needed to reach fixed error guarantee

Experiment: time needed to reach fixed error guarantee

Data

- Boolean chain query $R(x) S(x, y) T(y)$
- Tuples randomly sampled from domain with size prop to relation size
- probabilities in $[0,0.1]$

Error guarantees

- Calculate relative ε approx. from bounds U and L

ratio $\frac{U}{L}$	ε
3	0.5
1.5	0.2
1.22	0.1
1	0

Experiment: time needed to reach fixed error guarantee

Experiment: time needed to reach fixed error guarantee

Data

- Boolean chain query $R(x) S(x, y) T(y)$
- Tuples randomly sampled from domain with size prop to relation size
- probabilities in $[0,0.1]$

Error guarantees

- Calculate relative ε approx. from bounds U and L

ratio $\frac{U}{L}$	ε
3	0.5
1.5	0.2
1.22	0.1
1	0

MB: relative epsilon-approximation

MB (prior): model-based 10 random bounds

Median time to reach a certain error guarantee for fixed lin. size

Experiment: time needed to reach fixed error guarantee

Data

- Boolean chain query $R(x) S(x, y) T(y)$
- Tuples randomly sampled from domain with size prop to relation size
- probabilities in [0,0.1]

Error guarantees

- Calculate relative ε approx. from bounds U and L

ratio $\frac{U}{L}$	ε
3	0.5
1.5	0.2
1.22	0.1
1	0

PGD: relative epsilon-approximation

Experiment: time needed to reach fixed error guarantee

 median >100 sec (timed out)
Data

- Boolean chain query $R(x) S(x, y) T(y)$
- Tuples randomly sampled from domain with size prop to relation size
- probabilities in $[0,0.1]$

Error guarantees

- Calculate relative ε approx. from bounds U and L

ratio $\frac{U}{L}$	ε
3	0.5
1.5	0.2
1.22	0.1
1	0

Take-aways and open points

Take-aways \& open points scaled dissociations

Problem: anytime approximations for probabilistic inference

- need to choose from exponentially many model-based approximations (MB)*
- How to get good bounds fast?

Our solution: scaled dissociations

- Replace exponentially many UBs with one single better one
- Embed the combinatorial model-based space of LBs within a continuous enlarged space. Then use gradient-descent (GD) methods (with some tweaks, see paper)
Result:
- consistent speed-ups, at times considerable

Yet to understand:

Thanks! ©

- Properties of optimization: When is finding the best LB hard, when easy?
?. Iterative update methods that work better (but convergence...)
- Is there a principled, perhaps optimization-based approach, to selecting variables for Shannon expansion with the goal of reducing error of approximation?

BACKUP

Relative ε-approximation Olteanu, Huang, Koch[ICDE'10]

Anytime Approximation in Probabilistic Databases via Scaled Dissociations

Maarten V.d. Heuvel Peter Ivanov U of Antwerp
Wolfgang Gatterbauer
Northeastern U
Floris Geerts
U of Antwerp
Martin Theobald
U of Luxemburg

Probabilistic inference
key algorithmic problem in various areas such as Probabilistic Databases, AI, and Statistical Relational Learning. Well known to be hard

Branch \& Bound type Anytime Algorithms
approximations with flexible accuracy/time trade-off

at times > 100 x faster

