
1

Anytime	Approximation	
in	Probabilistic	Databases	
via	Scaled	Dissociations

SIGMOD 2019

Maarten Van den Heuvel
U of Antwerp Northeastern U

U of Luxemburg
Wolfgang Gatterbauer*

Peter Ivanov

Floris Geerts Martin Theobald
Northeastern U U of Antwerp

2

Team

Wolfgang Gatterbauer*

Maarten Van den Heuvel Peter Ivanov

Floris Geerts Martin Theobald

3

Probabilistic inference

• key	algorithmic	problem	in	probabilistic	AI
- e.g.	Probabilistic	Graphical	Models	(PGMs)
- e.g.	Statistical	Relational	Learning	(SRL)	
- e.g.	Probabilistic	Databases	(PDBs)

• L	well-known	to	be	#P-hard
- either	identify	tractable	cases
- or	find	approximations

• J	Anytime	approximation	framework
- create	more	and	more	refined	bounds
- until	you	get	a	certain	error	guarantee

Logic Probability

error

time

4

Probabilistic inference

• Deterministic	anytime	approximation
- returning	guaranteed	upper	and	lower	bounds

• Good	bounds	are	important
- prior	work	uses	model-based	(MB)	bounds

• ?	Problem
- exponentially	many	bounds	to	choose	from	(they	are	quite	different)
- how	to	choose	bounds	(perhaps	even	better	ones)?

• Our	approach:	scaled	dissociations
-Embed	the	combinatorial	model-based	space	of	lower	bounds	within	a	
continuous	enlarged	space,	then	use	continuous	optimization

error

time

💡

5

Agenda

1. Probabilistic	inference
– Boolean	formulas,	anytime	approximations

2. Better	bounds
– how	to	find	better	bounds	than	"model-based"	bounds

3. Experiments	&	Take-aways

Not	discussed	(please	see	paper	or	stop	by	at	the	poster)
– Probabilistic	databases	→	Lineage
– How	to	select	variable	to	decompose,	and	leaves	to	expand
– Various	technical	details

6

= 𝑥!𝑦! ∨ 𝑥!𝑦" ∨ 𝑥"𝑦#
= 𝑥!(𝑦! ∨ 𝑦") ∨ 𝑥"𝑦# Read-once	(RO)	expression

= ℙ 𝑥!(𝑦! ∨ 𝑦") ⊗ℙ[𝑥"𝑦#]

𝜑! 	 ⊥ 	 𝜑" ⇒ ℙ 𝜑! ∨ 𝜑" = 1−(1−ℙ 𝜑!)(1−	ℙ[𝜑"])

ℙ 𝑥$ = 𝑝$ ℙ 𝑦% = 𝑞%= (𝑝!⊙(𝑞!⊗𝑞"))⊗(𝑝"⊙𝑞#)

parse	tree

5	leaf	nodes	(5	variables)

BACKGROUNDProbabilistic inference: when it is easy
𝜑

ℙ[𝜑]
=	ℙ 𝜑! ⊗ℙ[𝜑"]
"independent-or"

⊙

𝑝!
𝑞! 𝑞"

𝑝"

⊗

⊗

⊙

𝑞#

expression	that	allows	us	
to	calculate	ℙ[𝜑]

7

= 𝑥!𝑦! ∨ 𝑥!𝑦" ∨ 𝑥"𝑦"

⊙

= 𝑥!𝑦! ∨ 𝑦"(𝑥! ∨ 𝑥")
𝜑

𝑝!
𝑞! 𝑞"

𝑝!	

⊕

⊗

⊙

6	leaf	nodes	(4	variables)

𝑥!

𝑥"

𝑦!

𝑦"
P4

"Decomposition"	
with	Shannon	expansion	
(total	probability	theorem)

= 𝑝!⊙ℙ 𝜑[1/𝑥!] ⊕𝑝!	⊙ℙ 𝜑[0/𝑥!]
= 𝑝!⊙(𝑞!⊗𝑞")⊕𝑝!	⊙(𝑝"⊙𝑞#)

𝑞#𝑝"

⊙

Probabilistic inference: when it is hard

ℙ	[𝜑]

BACKGROUND

parse	tree

expression	that	allows	us	
to	calculate	ℙ[𝜑]

8

⊙

𝑝!
𝑞! 𝑞"

𝑝!	

⊕

⊗

⊙

𝑞#𝑝"

⊙

parse	tree

Anytime compilation of Boolean formulas BACKGROUND

Fink,	Huang,	Olteanu	[VLDBJ'13]

Olteanu,	Huang,	Koch	[ICDE'10]
Fink,	Olteanu	[ICDT'11]

9

⊙

𝑝!
ℙ[𝜑!] 𝑞"

𝑝!	

⊕

⊗

⊙

𝑞#𝑝"

⊙

parse	tree

Anytime compilation of Boolean formulas BACKGROUND

𝕃[𝜑!] ≤

is	monotone1.
⇒	lower	and	upper	bounds	
propagate	to	the	root

ℙ[𝜑]𝕃[𝜑] ≤

Fink,	Huang,	Olteanu	[VLDBJ'13]

Olteanu,	Huang,	Koch	[ICDE'10]
Fink,	Olteanu	[ICDT'11]

10

𝑥! 𝑥!	

⊙

𝑝!
ℙ[𝜑!] 𝑞"

𝑝!	

⊕

⊗

⊙

𝑞#𝑝"

⊙

parse	tree

Anytime compilation of Boolean formulas BACKGROUND

Fink,	Huang,	Olteanu	[VLDBJ'13]

Olteanu,	Huang,	Koch	[ICDE'10]
Fink,	Olteanu	[ICDT'11]LB[𝜑!] ≤

is	monotone1.

LB[𝜑]

⇒	lower	and	upper	bounds	
propagate	to	the	root

⊙
⊕

⊙ grow	partial	"d-trees"	
("decomposition	tree")

2.

⇒	try	to	bound	early;	
continue	if	too	lose

11

BACKGROUND

But	how	do	we	get	the	bounds?

That's	where	the	magic	happens.

12

Model-based bounds (MBs)

• Model-based	bounds	(MBs):
- Intuition:	replace	repeated	variables	with	0	or	1	to	make	𝜑	read-once

• Remaining	problem
- How	to	choose	from	𝑑	'	options?	Each	may	lead	to	very	different	bounds.

• assuming	𝑛	variables	repeated,	each	with	𝑑	repetitions
• E.g.	we	encountered	formulas	with	𝑛 = 1225	and	AVG(𝑑)	≈	5.6

- Prior	work	chooses	randomly

𝜑 = 𝑥!𝑦! ∨ 𝑥!𝑦" ∨ 𝑥"𝑦"
𝜑(= 𝑥!𝑦! ∨	 𝑦" ∨ 𝑥"𝑦"

e.g.,	replace	2nd	instance	of	𝑥!	with	1	(True)

BACKGROUND

Fink,	Huang,	Olteanu	[VLDBJ'13]
Fink,	Olteanu	[ICDT'11]

result	is	simpler	and	upper	bound

13

Agenda

1. Probabilistic	inference
– Boolean	formulas,	anytime	approximations

2. Better	bounds
– how	to	find	better	bounds	than	"model-based"	bounds

3. Experiments	&	Take-aways

14

Oblivious Bounds for Monotone Boolean functions

Upper
(1-p')(1-p'')=1-p

G.,	Suciu	[TODS'14]
Given:

Replace	it	with:

How	to	choose	𝑝′	and	𝑝′′	s.t.	we	get	a	lower	bound	ℙ[𝜑′]	≤	ℙ[𝜑]	(or	upper	bound)

𝜑 = 𝜑!⋁𝜑"
𝜑′ = 𝜑![𝑥)/𝑥]	∨	𝜑"[𝑥))/𝑥] (let's	call	it	dissociation)

Opt.	Oblivious
bounds: Lower	

p'=p,	p''=p

and	all	probabilities	are	0.5
𝜑 = 𝑥!′𝑦! ∨ 𝑥!′′𝑦" ∨ 𝑥"𝑦"

Model-based
bounds:

Upper
Lower

p'=p,	p''=1
p'=p,	p''=0

PROBLEM

RESULT

EXAMPLE

Then	ℙ[𝜑]=0.5 10
0

1

𝑝Y′′

𝑝Y′

0.44

0.38

0.63

0.53 0.69

15

Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases 21

6 16 15 21 17 1 11 20 3 5
0.45

0.5

0.55

0.6

0.65 Diss. on Supplier
Best of both Diss.
Part dissociated
Actual Probability

(a) $1=10000, $2=’%red%green%’
p = rand 0.5, MaxLin = 48

(b) $1=10000, $2=’%red%’
p = rand 0.5, MaxLin = 1941

(c) $1=10000, $2=’%red%green%’
p = 0.5, MaxLin = 48

(d) $1=3000, $2=’%red%’
p = 0.1, MaxLin = 611

(e) $1=10000, $2=’%red%’
p = 0.1, MaxLin = 1941

(f) $1=10000, $2=’%’
p = 0.1, MaxLin = 35040

Case Answer Fig. #Part %diss. #fresh #Supp. %diss. #fresh tighter bounds
(A) (2) (c) 40 7.5% 2 43 0.0% - PS
(B) (6) (a) 42 11.9% 2 53 7.5% 2 PS
(C) (11) (b) 1830 5.8% 2 434 95.6% 2-11 PP
(D) (11) (f) 32899 6.3% 2 438 100.0% 80 PP

(g) Overview of 4 cases discussed in the text

Fig. 24 Example 36. Probabilities for the top 10 query answers for varying query parameters $1, $2, and tuple probabilities p. The ranking is
determined by the upper dissociation bounds (upper end of the red interval) and is identical to the one determined by the actual probabilities
(crosses), except in (c) where tuples 6 and 21 are flipped. MaxLin shows the maximal lineage among the query answers, which is too big in (f) for
exact probabilistic inference. (b): x = 0.999999999999 = 1�10�12. (f): x = 0.9999999999 = 1�10�10.

Timing Results: Figure 25 compares the times for eval-
uating the deterministic query (Fig. 23a) with the times for
calculating the dissociation bounds for changing parameters
$1 and $2. As experimental platform, we use PostgreSQL
9.2 on a 2.5 Ghz Intel Core i5 with 16G of main memory.
We run each query 5 times and take the average execution
time. Figure 26e also shows the size of the total lineage of
a query (which is the same as the number of query results
for the deterministic query without projection) and the times
needed by SampleSearch to evaluate the ground truth, if pos-
sible.17 Since table Supplier contains exactly 10k tuples with
suppkey 2 {1, . . . ,10000}, any choice of $1�10000 has no
effect on the query. We show separate graphs for the time

17 The reported times are for evaluating all answer DNFs without the
overhead for the lineage query.

needed to calculate the upper bounds only (which our the-
ory and experiments suggest give better absolute approxima-
tions) and the time for both upper and lower bounds (lower
bounds are more expensive due to the required manipulation
of the input tuples). We also show the times for retrieving
the lineage with a lineage query. Any probabilistic approach
that evaluates the probabilities outside of the database en-
gine needs to issue this query to retrieve the DNF for each
answer. The time needed for the lineage query thus serves as
minimum benchmark for any probabilistic approximation.

Our timing results show that, for small lineages (< 10000),
calculating upper and lower bounds can be achieved in a
time that is only a small multiple (< 4) of the time needed
for an equivalent deterministic query. For large lineages (>
10000), calculating the bounds scales linearly with the size
of the lineage (Fig. 25c), whereas deterministic query eval-

Lower bounds by default are not good

G.,	Suciu	[TODS'14]Figure	from	

used	"symmetric	
dissociations"	(SDs)

p 10
0

p

1

Conclusion	at	the	time	was	to	just	use	upper	bounds	and	ignore	the	lower	bounds

lower	bounds	
were	very	bad

G.,	Suciu	[VLDB’15]
G.,	Suciu	[VLDBJ’17]

16

Then	use	this	bound	as	lower	bound	for	anytime	approximation

Scaled	dissociation	(informally):	Find	the	maximal	lower	
bounds	among	all	that	fulfill	the	constraints.	

Definition scaled dissociation (informal)

17

Finding scaled dissociations is not trivial

• Optimization	problem	is	not	nice			L
- non-linear	objective	function
- non-convex	constraint	set	
- This	makes	it	difficult	to	apply	optimization	methods

• What	we	are	going	to	do			J
- We	perform	a	change	of	variables	s.t.	we	can	instead	solve	
a	non-linear	optimization	problem	over	convex	sets

- Then	apply	known	gradient-descent	(GD)	methods

18

Reduction to convex constraint set

1 − ℙ 𝑥	 = 1 − 𝑞! 1 − 𝑞"

We	observe	that	we	can	reformulate	the	constraints

𝛼! + 𝛼"	=	1

More	generally,	for	d>2

∑%∈[d] 	 𝛼%	=	1

One	probability	
simplex	∆$	for	
each	variable	i

𝑞% ∈ [0,1]

𝛼% ∈ [0,1] 𝜶	 ∈ [0,1]+

= 1 − ℙ 𝑥	 ,! 1 − ℙ 𝑥	 ," = 𝑎,!𝑏,"

Optimization	problem	over	a	set	of	convex	probability	simplexes
𝜶-./ = arg	max{𝑔(⟨𝜶!, 𝜶", …𝜶'⟩)|𝜶$ ∈ ∆$, 𝑖 ∈ [𝑛]}

(0,0,1)

𝛼!

𝛼"

𝛼#

(0,1,0)

(1,0,0)

DETAILS

max𝑔(𝛼!, 𝛼")

max 𝑓(𝑞!, 𝑞")

💡

19

Gradient Descent methods
Optimization	problem	over	convex	probability	simplexes

Projected	GD	(PGD) Conditional	GD	(CGD)

(0)
(1)

(2)

1.	Move	in	the	direction	of	the	gradient

2.	Project	back	into	∆ 	

(0)
(1)

1.	Move	in	the	direction	of	the	optimal	point
in		∆ assuming	a	linearized	approximation
...	with	"some"	step	size

20

More details in the paper about making this fast

• Gradient	can	be	calculated	efficiently
- we	have	read-once	formulas,	connection	to	influence	of	a	variable

• Evaluate	𝑔(𝜶)	and	∇𝑔(𝜶)	only	once	per	optimization	step
- To	guarantee	convergence	of	to	local	optimum	by	PGD	and	CGD,	we	
would	have	to	re-evaluate	𝑔(𝜶)	and	∇𝑔(𝜶)	multiple	times	per	step

- But	we	are	able	to	bound	differences	between	gradients	in	different	
points	in	∆.	Thus	no	need	to	re-evaluate

Kanagal,	Li,	Deshpande	[SIGMOD'11]

DETAIL

21

Instantiations of anytime approximation framework

• a general framework that allows combinations of instantiation

1.	Find	bounds

2.	Decompose

Procedure Decisions Choices
Method
#	Steps
Strategy

Variable	selection

MB,	SD,	PGD,	CGD
1,	10

local,	global
Occmax,	Imax,	etc.

grayed	out	please	see	paper

22

Agenda

1. Probabilistic	inference
– Boolean	formulas,	anytime	approximations

2. Better	bounds
– how	to	find	better	bounds	than	"model-based"	bounds

3. Experiments		&	Take-aways

23

How does it perform in practice?

• Tried	on	4800	lineages
- Obtained	as	lineages	of	hard	queries	(synthetic,	TPC-H,	Yago3)

• Compared	39	instantiations	of	the	anytime	approximation	framework
- with	model-based	(MB),	symmetric	lower	bound,	scaled	dissociation	(PGD,	CGD)
- Including	various	node	and	variable	selection	strategies

Take-away	message
• our	gradient	descent	(GD)	methods	perform	overall	the	best.
• Improves	prior	model-based	methods	(MB),	sometimes	quite	a	lot.
• GD	methods	should	not	do	too	many	steps	(no	need	to	wait	for	convergence)

• Details	are	in	the	paper.	We	illustrate	next	with	one	synthetic	example

24

Data
• Boolean	chain	query	
R(x)S(x,y)T(y)

• Tuples	randomly	sampled	
from	domain	with	size	prop	
to	relation	size

• probabilities	in	[0,0.1]

0.5
0.2

3
1.5

0.11.22

εratio	"
#

01

Olteanu+[ICDE'10]

Error	guarantees
• Calculate	relative	ε-
approx.	from	bounds	U	
and	L	

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Experiment: time needed to reach fixed error guarantee

notice	the	log	scale!

MB	(prior):	model-based
10	random	bounds

25

Data
• Boolean	chain	query	
R(x)S(x,y)T(y)

• Tuples	randomly	sampled	
from	domain	with	size	prop	
to	relation	size

• probabilities	in	[0,0.1]

0.5
0.2

3
1.5

0.11.22

εratio	"
#

01

Olteanu+[ICDE'10]

Error	guarantees
• Calculate	relative	ε-
approx.	from	bounds	U	
and	L	

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Experiment: time needed to reach fixed error guarantee

notice	the	log	scale!

MB	(prior):	model-based
10	random	bounds

26

Data
• Boolean	chain	query	
R(x)S(x,y)T(y)

• Tuples	randomly	sampled	
from	domain	with	size	prop	
to	relation	size

• probabilities	in	[0,0.1]

0.5
0.2

3
1.5

0.11.22

εratio	"
#

01

Olteanu+[ICDE'10]

Error	guarantees
• Calculate	relative	ε-
approx.	from	bounds	U	
and	L	

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Experiment: time needed to reach fixed error guarantee

notice	the	log	scale!

MB	(prior):	model-based
10	random	bounds

Median	time	to	
reach	a	certain	
error	guarantee	
for	fixed	lin.	size

27

Data
• Boolean	chain	query	
R(x)S(x,y)T(y)

• Tuples	randomly	sampled	
from	domain	with	size	prop	
to	relation	size

• probabilities	in	[0,0.1]

0.5
0.2

3
1.5

0.11.22

εratio	"
#

01

Olteanu+[ICDE'10]

Error	guarantees
• Calculate	relative	ε-
approx.	from	bounds	U	
and	L	

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Experiment: time needed to reach fixed error guarantee

Median	time	to	
reach	a	certain	
error	guarantee	
for	fixed	lin.	size

notice	the	log	scale!

MB	(prior):	model-based
10	random	bounds

28

Data
• Boolean	chain	query	
R(x)S(x,y)T(y)

• Tuples	randomly	sampled	
from	domain	with	size	prop	
to	relation	size

• probabilities	in	[0,0.1]

0.5
0.2

3
1.5

0.11.22

εratio	"
#

01

Olteanu+[ICDE'10]

Error	guarantees
• Calculate	relative	ε-
approx.	from	bounds	U	
and	L	

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

PGD: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Experiment: time needed to reach fixed error guarantee

notice	the	log	scale!

PGD	(our):	projected	
gradient	descent

29

101 102 103 104

Lineage Size

10°3

10°2

10°1

100

101

102

103

T
im

e
(s

ec
)

399x faster

MB and PGD: relative epsilon-approximation

MB 0.0
MB 0.2
MB 0.4
PGD 0.0
PGD 0.2
PGD 0.4

Experiment: time needed to reach fixed error guarantee
Data
• Boolean	chain	query	
R(x)S(x,y)T(y)

• Tuples	randomly	sampled	
from	domain	with	size	prop	
to	relation	size

• probabilities	in	[0,0.1]

0.5
0.2

3
1.5

0.11.22

εratio	"
#

01

notice	the	log	scale!Olteanu+[ICDE'10]

Error	guarantees
• Calculate	relative	ε-
approx.	from	bounds	U	
and	L	

PGD	(our):	projected	
gradient	descent

MB	(prior):	model-based
10	random	bounds

Take-away
• considerable	
speed-ups	
possible	J

median	>100	sec	(timed	out)

>	1000	x	faster

100	msec

30

Take-aways
and open points

31

Take-aways & open points scaled dissociations
Problem: anytime approximations for probabilistic inference
• need to choose from exponentially many model-based approximations (MB)*
• How to get good bounds fast?

Our solution: scaled dissociations
• Replace exponentially many UBs with one single better one
• Embed the combinatorial model-based space of LBs within a continuous enlarged space.

Then use gradient-descent (GD) methods (with some tweaks, see paper)

Result:
• consistent speed-ups, at times considerable

Yet to understand:
• Properties of optimization: When is finding the best LB hard, when easy?
• Iterative update methods that work better (but convergence...)
• Is there a principled, perhaps optimization-based approach, to selecting variables for

Shannon expansion with the goal of reducing error of approximation?
* exponential in number of repeated variables

💡

?

?

! Thanks! J

32

BACKUP

33

Relative ε-approximation

1

0

U

L

U=0.6

L=0.4

return	0.5

U
1 + ε

≤
L

1 − ε

	

∙(1+ε)

∙(1−ε)
p

ε-valid	interval

then	ε=0.2

ε

0.2

ratio	>?

1.5
0.1 1.22
0.05 1.1

ε =
U
L − 1

1 + UL

	

Olteanu,	Huang,	Koch[ICDE'10]

0 1

0.5 3

Numerical	example

iff

34

Anytime Approximation in Probabilistic Databases via Scaled Dissociations

11:30-12:50 Administratiezaal - SIGMOD Research 13: Fairness, Uncertainty

Key idea:
💡embed combinatorial space of bounds within a continuous space

Results:
– continuous optimization problem (gradient descent) + better bounds
– considerable speed-ups across various data sets

Maarten V.d. Heuvel Peter Ivanov Wolfgang Gatterbauer Floris Geerts Martin Theobald
U of Antwerp Northeastern U Northeastern U U of Antwerp U of Luxemburg

error

time

at times >100x faster

Branch & Bound type Anytime Algorithms
✅ approximations with flexible accuracy/time trade-off
❌ but how to choose among combinatorially many bounds?

Logic ProbabilityProbabilistic inference
key algorithmic problem in various areas such as Probabilistic Databases,
AI, and Statistical Relational Learning. Well known to be hard

