Factorized Graph Neural Networks (and the power of algebraic, cheating) changing the rule of the game ("Do I really need to teach PAXOS?")

Wolfgang Gatterbauer

Based on work with Krishna Kumar and Paul Langton, and earlier work with Christos Faloutsos, Stephan Günnemann, and Danai Koutra Nov 15, 2023

Semi-supervised Node classification

Problem: Given a network with labels on some nodes, what labels should we assign to all other nodes?

Semi-supervised Node classification

Problem: Given a network with labels on some nodes, what labels should we assign to all other nodes?

Semi-supervised Node classification

Problem: Given a network with labels on some nodes, what labels should we assign to all other nodes?

$\mathbf{H}=$| 0.2 | 0.6 | 0.2 |
| :--- | :--- | :--- |
| 0.6 | 0.2 | 0.2 |
| 0.2 | 0.2 | 0.6 |
| "compatibilities" | | |

"=1

Semi-supervised Node classification

$\mathbf{M}=$| 4 | 12 | 4 |
| :---: | :---: | :---: |
| 12 | 4 | 4 |
| 4 | 4 | 12 |

$\mathbf{H}=$| 0.2 | 0.6 | 0.2 |
| :--- | :--- | :--- |
| 0.6 | 0.2 | 0.2 |
| 0.2 | 0.2 | 0.6 |
| 0 | | |

"compatibilities"
Problem: Given a network with labels on some nodes, what labels should we assign to all other nodes?

$$
\left|\begin{array}{lll}
0.6 & 0.2 & 0.2 \\
0.2 & 0.2 & 0.6
\end{array}\right| \Sigma=1
$$

Semi-supervised Node classification

Problem: Given a network with labels on some nodes, what labels should we assign to all other nodes?

No attributes: We only use relational information (the graph structure)

$\mathbf{M}=$| 4 | 12 | 4 |
| :---: | :---: | :---: |
| 12 | 4 | 4 |
| 4 | 4 | 12 |

$\mathbf{H}=$| 0.2 | 0.6 | 0.2 |
| :---: | :---: | :---: |
| 0.6 | 0.2 | 0.2 |
| 0.2 | 0.2 | 0.6 |

"compatibilities"

Problem: Given a network with labels on some nodes, what labels should we assign to all other nodes?

No attributes: We only use relational information (the graph structure)

$\mathbf{M}=$| 4 | 12 | 4 |
| :---: | :---: | :---: |
| 12 | 4 | 4 |
| 4 | 4 | 12 |

$\mathbf{H}=$| 0.2 | 0.6 | 0.2 |
| :--- | :--- | :--- |
| 0.6 | 0.2 | 0.2 |
| 0.2 | 0.2 | 0.6 |
| 0 | | |

"compatibilities"

Semi-supervised Node classification

Part 1 (Inference):

- Given a network W,
- labels on some nodes, and
- compatibilities \mathbf{H},

What labels should we assign to all other nodes?

Semi-supervised Node classification

Part 1 (Inference):

- Given a network W,
- labels on some nodes, and
- compatibilities \mathbf{H},

What labels should we assign to all other nodes?

PART 2 (LEARNing):

- Given a network W,
- labels on some nodes, and
- compatibilities \mathbf{H},
what labels should we assign to all other nodes?

Approximate Agenda

- Problem 1: How to propagate compatibilities? Linearized Belief Propagation [VLDB'15]
- Problem 2: How to learn/estimate compatibilities? Factorized graph representations [SIGMOD'20]
- Discussion

Belief Propagation (BP)

BP is a Dynamic Programming (DP) approach to answer conditional probability queries in a tree-based graphical model

1) Initialize all message entries to 1
2) Iteratively: calculate messages for each edge and class

3) After messages converge: calculate final beliefs

$$
f_{S}(i) \propto x_{s}(i) \prod_{u \in N(s)} m_{u s}(j)
$$

Collective Classification in Network Data

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad

Al magazine 2008
cant and useful. However, the LBP accuracy had a sudden drop when the graph became very dense. The reason behind this result is the well known fact that LBP has convergence issues when there are many short loops in the graph.
gorithms. First, although MF and LBP performance is in some cases a bit better than that of ICA and GS, MF and LBP were also the most difficult to work with in both learning and inference. Choosing the initial weights so that the weights will converge during training is nontrivial. Most of the time, we had to initialize the weights with the weights we got from ICA in order to get the algorithms to converge. Thus, the results reported from

Our solution for part 1:

1. Linearize and thereby simplify Belief Propagation (it becomes "algebraically convenient")
2. Turns out to generalize semi-supervised learning from smoothness (incl. PageRank) to heterophily
3. In more modern language: an infinitely deep graph neural network with tied parameters and removed non-linearities, and no "oversmoothing"

Key Ideas: 1) Centering + 2) Linearizing BP

(2) Expression Maclaurin series Approximation Logarithm $\ln (1+\epsilon) \quad=\epsilon-\frac{\epsilon^{2}}{2}+\frac{\epsilon^{3}}{3}-\ldots \quad \approx \epsilon$ Division $\quad \frac{\frac{1}{k}+\epsilon_{1}}{1+\epsilon_{2}}=\left(\frac{1}{k}+\epsilon_{1}\right)\left(1-\epsilon_{2}+\epsilon_{2}^{2}-\ldots\right) \approx \frac{1}{k}+\epsilon_{1}-\frac{\epsilon_{2}}{k}$

Intuition behind Centering and Linearizing

Center \(\quad \begin{aligned} \& 0.5

\& 0.5\end{aligned} \odot\)\begin{tabular}{|l}
0.5

0.5

$=$

\hline 0.25

0.25

$\Sigma=0.50$

\propto

$\begin{array}{l}0.5 \\
0.5 \\
\Sigma=1\end{array}$

\hline
\end{tabular}

Summation instead of multiplication!
No more normalization necessary ;)

Matrix formulation of LinBP

Compare to Personalized PageRank

Basically a generalization of Katz centrality!

Matrix formulation of LinBP

Update equation

Closed form

vectorization of matrix: stacks columus on top of each other

Convergence
Spectral radius of (...) < 1
Scale with "appropriate" $\varepsilon: \quad \mathbf{H}^{\prime} \leftarrow \mathcal{E} \mathbf{H}$
Scaling factor: $\varepsilon=s \cdot \varepsilon^{*} \quad\left(\varepsilon^{*}\right.$ convergence boundary)

Geometric sums (intuition for closed-form)

Recall Javier's talk ()

$$
S=1+x+x^{2}+\ldots \quad=\frac{1}{1-x}=(1-x)^{-1},|x|<1
$$

$$
x=1 / 2 \quad S=1+1 / 2+1 / 4+\ldots \quad=\frac{1}{1-1 / 2}=2
$$

$$
x=-1 / 2 \quad S=1-1 / 2+1 / 4-\ldots \quad=\frac{1}{1+1 / 2}=2 / 3
$$

$$
x=2 \quad S=1+2+4+\ldots
$$

$$
\nexists \frac{1}{1-2}=-1
$$

LinBP leads to very concise code (Python)

BP (Belief Propagation)

LinBP

```
- Actual loop: each loop calculates (a) the new messages (with damping) and (b) the new beliefs
actual NumIt =-1 # iterations start with 0th iteration
WNumIt
    #- (a) calculate messag
        ct_messages_ss (counts as 0th iteration): create message dictionaries and initialize messages with ones
```



```
        #ct-messages_against_1 = 0} # # dictionary: messages for is
        dict__mssages_along_1[(i,j))= default
    else:
        #- other iterations: calculate "messages nem" using message-passing with division (from F and messages)
        dict_messages_against_2 = i, # new dictionary: messages for each edge (i<-j) in direction i->
        for (i,j) in dict_messages_along_1.keys(): # also includes following case: "for (j, ,i) in dict_messages_against_1.keys()
            Pot = P[dict_edges_pot[(i,})]-1, ;, :] [] to referce the correct potential in case 1m_pot 
            ict_messages_along_2[i,_)] =( (F2[i] / dict_messages_against_1((j, i)]).dot(Pot) # entry-wise divisio
            *)
            - assign new to old message dictionaries, and optionally damp messages
```



```
        dict_messages_long_1 = dict_messages_along_2.copy()
            for (i,j) in dict_messages_along_1.keys();
            dict_messages__ along_1[(i,j)]= = damping*dict_messages_along_2[(i,j)] +
            For (i,j) in dict_messages_aganst_1.keys()
            *)
    *- (b) create new beliefs by multiplying prior beliefs with all incoming messages (pointing in both directions)
    if not clamping or implicitvector[i] =0: # only update beliefs if those are not explicit and clamped
            2[i] = xo[i] # need to start multiplying from explicit beliefs, reforencing the row clampesea
            for j in dict_edges_out[i]: # edges pointing away
            For F2[i] *= dict_messages_against_1[(j,i)]}#\mathrm{ #des pointing inwards
            *)
    #- normalize beliefs (To00: perhaps remove later to optimize except in last round]
```

```
\# — normalize beliefs (TTo00: perhaps remove later to optimize except in last round]
F2
```


"Algebraic cheating" for approximation-aware learning
That goes against all the ideas from efficient knowledge compilation :()

"Algebraic cheating" for approximation-aware learning

 That goes against all the ideas from efficient knowledge compilation (:)

Approximate Agenda

- Problem 1: How to propagate compatibilities? Linearized Belief Propagation [VLDB'15]
- Problem 2: How to learn/estimate compatibilities? Factorized graph representations [SIGMOD'20]
- How well does it work?
- What is the magic sauce?
- What we would like to do (but it does not work)
- What we actually do (Distant Compatibility Estimation)
- Discussion

Time and Accuracy for label propagation if we know \mathbf{H}

Label propagation linear in \# edges

Fewer labels

Time and Accuracy if we need to first estimate $\mathrm{H}:$:

Estimation uses inference as subroutine (thus slower) $)^{2}$

Time and Accuracy with our method ()
ACM SIGMOD 2021 Reproducibility
Award for papers from SIGMOD 2020

Our method for estimating H needs $<5 \%$

 of the time later needed for labeling ;)

Fewer labels
No more need for heuristics or domain experts :)

Approximate Agenda

- Problem 1: How to propagate compatibilities? Linearized Belief Propagation [VLDB'15]
- Problem 2: How to learn/estimate compatibilities? Factorized graph representations [SIGMOD'20] - How well does it work?
- What is the magic sauce?
- What we would like to do (but it does not work)
- What we actually do (Distant Compatibility Estimation)
- Discussion

Splitting parameter estimation into two steps

Sparsely labeled network

Parameter/Estimation (in 2 steps) Label Propagation
Derived statistics for path lengths $1,2, \ldots, \ell$

$k \times k$ matrices
Fâctorized
graph representations
independent of graph size
linear in \# edges (m)
and \# of classes (k)

Fully labeled network

Approximate Agenda

- Problem 1: How to propagate compatibilities? Linearized Belief Propagation [VLDB'15]
- Problem 2: How to learn/estimate compatibilities? Factorized graph representations [SIGMOD'20] - How well does it work?
- What is the magic sauce?
- What we would like to do (but it does not work)
- What we actually do (Distant Compatibility Estimation)
- Discussion

A myopic view: counting relative neighbor frequencies

Fully labeled graph

Neighbor count Gold standard compatibilities

$$
\mathbf{M}=\begin{array}{|lll}
\hline 2 & 6 & 2 \\
6 & 2 & 2 \\
2 & 2 & 6
\end{array}|\Rightarrow \mathbf{H}=| \begin{array}{|lll}
0.2 & 0.6 & 0.2 \\
0.6 & 0.2 & 0.2 \\
0.2 & 0.2 & 0.6 \\
\text { normalize }
\end{array}
$$

Sparsely labeled graph

Labeled neighbor count

$$
\left.\widehat{\mathbf{M}}=\begin{array}{|lll|}
\hline 0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array} \right\rvert\, \Sigma=1 . \begin{array}{|c}
\Sigma=2
\end{array} \widehat{\mathbf{H}}
$$

Idea: normalize, then find closest symmetric, doubly-stochastic matrix

A myopic view: counting relative neighbor frequencies

Fully labeled graph

Neighbor count Gold standard compatibilities

$$
\mathbf{M}=\begin{array}{|lll}
\hline 2 & 6 & 2 \\
6 & 2 & 2 \\
2 & 2 & 6
\end{array}|, \mathbf{H}=| \begin{array}{|lll}
0.2 & 0.6 & 0.2 \\
0.6 & 0.2 & 0.2 \\
0.2 & 0.2 & 0.6 \\
\text { normalize }
\end{array}
$$

Sparsely labeled graph

Remaining problem : Assume $f=10 \%$ labeled nodes.?
What is the percentage of edges with labeled end points

> 1\% : $:$ Few nodes \Rightarrow even fewer edges $m f^{2}$

Myopic compatibility estimation (MCE): from M to H DETAILS

1. Graph summarization
2. Optimization

Neighbor statistics

Example values

0.1	0.75	0.15		
0.375	0.1	0.525		
0.05	0.35	0.6	\quad	$\mid=1$
:---				
$=0.525$				

18	135	27
135	36	189
	$\Sigma=180$	
27	189	324
	$\Sigma=540$	

$$
\mathbf{M}=\mathbf{X}^{\top} \cdot \underset{\text { graph }}{\mathbf{W}} \cdot \underset{\text { labels }}{\mathbf{X}}
$$

Observed row-stochastic compatibility matrix $\widehat{\mathbb{P}}$

$$
\widehat{\mathbb{P}}=\mathbf{M}^{\text {row }} \xlongequal{\wedge} \operatorname{diag}(\mathbf{M} \mathbf{1})^{-1} \cdot \mathbf{M}
$$

Closest doubly stochastic symmetric matrix \widehat{H}
Observed labeled neighbor counts \mathbf{M}

$$
E(\mathbf{H})=\|\mathbf{H}-\widehat{\mathbb{P}}\|^{2}
$$

$$
\widehat{H}=\min ^{\mathbf{H}} \mathbf{E}(\mathbf{H}) \text { s.t. }\left\{\begin{array}{l}
\mathbf{H} \mathbf{H}=\mathbf{1} \\
\mathbf{H}^{\top}=\mathbf{H}
\end{array}\right.
$$

Approximate Agenda

- Problem 1: How to propagate compatibilities? Linearized Belief Propagation [VLDB'15]
- Problem 2: How to learn/estimate compatibilities? Factorized graph representations [SIGMOD'20] - How well does it work?
- What is the magic sauce?
- What we would like to do (but it does not work)
- What we actually do (Distant Compatibility Estimation)
- Discussion

Distant compatibility estimation (DCE)

	$\ell=1$	$\ell=2$
0	0.6 1 0	0.28 0.2 0.44 0.2
0.28	0.38 0.31	0.31

Expected signals for neighbors

$$
\begin{aligned}
& \mathbf{H}^{2}=\begin{array}{|llll|}
\hline 0.44 & 0.28 & 0.28 \\
0.28 & 0.44 & 0.28 \\
0.28 & 0.28 & 0.44 \\
\hline
\end{array} \\
& \mathbf{H}^{3}=\begin{array}{llll}
0.31 & 0.38 & 0.31 \\
0.38 & 0.31 & 0.31 \\
0.31 & 0.31 & 0.38 \\
\hline
\end{array}
\end{aligned}
$$

$$
0.6,0.44,0.38,0.35, \ldots
$$

(maximal entries)

Distant compatibility estimation (DCE)

	$\ell=1$	$\ell=2$
0	0.6 1 0.2 0 0.2	0.28 $\ell=3$ 0.44 0.28

Expected signals for neighbors
graph with:

- m edges
- f fraction labeled nodes
- d node degree

Expected \# of labeled neighbors of distance l
$d^{\ell-1} m f^{2}$ expected neighbors
of distance l

Idea: amplify the signal from observed length- ℓ paths :)

Distant compatibility estimation (DCE) observed path- row $\begin{gathered}\text { oftoh hastic compatibilities } \overline{\text { DETAILS }}\end{gathered}$

Expected signals for neighbors
distance-smoothed energy function

Statistics for path

$$
E(H)=\sum_{\ell=1}^{\ell_{\max }} w_{\ell}\left\|H^{\ell}-\hat{\mathbf{P}}^{(\ell)}\right\|^{2}
$$

lengths 1, 2, ...

$$
w_{\ell+1}=\lambda w_{\ell} \quad \mathbf{w}=\left[1, \lambda, \lambda^{2}, \ldots\right]^{\top}
$$

one free parameter (like in PageRank):

Two technical difficulties

1. We must ignore backtracking paths
2. Calculating longer paths leads to dense matrix operations $:$
($\mathbf{W}=$ sparse adjacency matrix)

2. Requires more careful refactorization of the calculation

Scalable factorized path summation

Intuition

Relational algebra $\pi_{x}(R(x) \bowtie S(x, y))$ $R(x) \bowtie \pi_{x} S(x, y)$

W: sparse $n \times n$ matrix
 W: sparse $n \times n$ matrix $\quad X:+$ hin $n \times k(k<n n)$
 Linear algebra label matrix
 (W.W) • X

$\Rightarrow \quad \mathrm{W} \cdot \underbrace{(\mathrm{W} \cdot \mathrm{X})}$
small $n \times k$ intermediate results

Details

Proposition 4.2 (Non-backtracking paths). Let $\mathbf{W}_{\mathrm{NB}}^{(\ell)}$ be the matrix with $W_{\mathrm{NB}}^{(\ell)}$ being the number of nonbacktracking paths of length ℓ from node i to j. Then $\mathbf{W}_{\mathrm{NB}}^{(\ell)}$ for $\ell \geq 3$ can be calculated via following recurrence relation:

$$
\begin{equation*}
\mathbf{W}_{\mathrm{NB}}^{(\ell)}=\mathbf{W} \mathbf{W}_{\mathrm{NB}}^{(\ell-1)}-(\mathbf{D}-\mathbf{I}) \mathbf{W}_{\mathrm{NB}}^{(\ell-2)} \tag{15}
\end{equation*}
$$

with starting values $\mathbf{W}_{\mathrm{NB}}^{(1)}=\mathbf{W}$ and $\mathbf{W}_{\mathrm{NB}}^{(2)}=\mathbf{W}^{2}-\mathrm{D}$.

Algorithm 4.3 (Factorized path summation). Iteratively calculate the graph summaries $\hat{\mathbf{P}}_{\mathrm{NB}}^{(\ell)}$, for $\ell \in\left[\ell_{\max }\right]$ as follows:
(1) Starting from $\mathbf{N}_{\mathrm{NB}}^{(1)}=\mathbf{W X}$ and $\mathbf{N}_{\mathrm{NB}}^{(2)}=\mathbf{W} \mathbf{N}_{\mathrm{NB}}^{(1)}-\mathbf{D X}$, iteratively calculate $\mathrm{N}_{\mathrm{NB}}^{(\ell)}=\mathbf{W N}_{\mathrm{NB}}^{(\ell-1)}-(\mathrm{D}-\mathrm{I}) \mathrm{N}_{\mathrm{NB}}^{(\ell-2)}$.
(2) Calculate $\mathbf{M}_{\mathrm{NB}}^{(\ell)}=\mathbf{X}^{\top} \mathbf{N}_{\mathrm{NB}}^{(\ell)}$.
(3) Calculate $\hat{\mathbf{P}}_{\mathrm{NB}}^{(\ell)}$ from normalizing $\mathbf{M}^{(\ell)}$ with Eq. 9.

Proposition 4.4 (Factorized path summation). Algorithm 4.3 calculates all graph statistics $\hat{\mathbf{P}}_{\mathrm{NB}}^{(\ell)}$ for $\ell \in\left[\ell_{\text {max }}\right]$ in $O\left(m k \ell_{\max }\right)$.

Scalable factorized path summation

Intuition

Relational algebra
 $\begin{aligned} & \pi_{\mathrm{x}}(R(x) \\ \Rightarrow \quad R(x) & \left.\bowtie \pi_{x} S(x, y)\right)\end{aligned}$

$\Rightarrow \quad \mathrm{W} \cdot(\mathrm{W} \cdot \mathrm{X})$
small $n \times k$ intermediate results

Similar ideas of factorized calculation:

- Generalized distributive law [Aji-McEliece IEEE TIT '00]
- Algebraic path problems [Mohri JALC'02]
- Provenance semirings [Green+ PODS'07]
- Valuation algebras [Kohlas-Wilson Al'08]
- Factorized databases
[Olteanu-Schleich Sigmod-Rec'16]
- FAQ (Functional Aggregate Queries) [AboKhamis-Ngo-Rudra PODS'16]
- Associative arrays [Kepner, Janathan MIT-press'18]
- Optimal ranked enumeration [Tziavelis+ VLDB'20]

Approximate Agenda

- Problem 1: How to propagate compatibilities? Linearized Belief Propagation
- Problem 2: How to learn/estimate compatibilities? Factorized graph representations
- Discussion

Neighborhood aggregation in GNNs
Input graph

simplification
\qquad simplification

Computation graph

GCNs

[Kipf, Welling 2017]
Graph convolution, Supervised learning via cross entropy

SGCs

[Wu+ 2019]
Simplified graph convolution, Non-linearity only at the end

LinBP / DCE
[VLDB'15], [SIGMOD'20]
No non-linearities \sum,
Infinite layers, No oversmoothing
because spectral radius <1,
Structured regression via $\ell 2$-norm

Belief Propagation
[Pearl 1986]
Multiplication П

Open topics

1. Network information only in semi-supervised setting: how much can one learn without node features?

- a unified information theoretic framework (\#parameters vs. \#labeled data)

2. Phenomenology of network effects: label bias, degree distributions, long-distance interactions ("triangles"), combinatorial properties,...

- how to create "unbiased" synthetic graph generators

3. What formalism can learn those phenomena "well enough"?

- and how well "factorizable"

